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SPECIAL FUNCTIONS:

APPROXIMATIONS AND BOUNDS

P. Cerone

The Steffensen inequality and bounds for the Čebyšev functional are
utilised to obtain bounds for some classical special functions. The technique
relies on determining bounds on integrals of products of functions. The above
techniques are used to obtain novel and useful bounds for the Bessel function
of the first kind, the Beta function, and the Zeta function.

1. INTRODUCTION AND REVIEW OF SOME RECENT RESULTS

There are a number of results that provide bounds for integrals of products
of functions. The main techniques that shall be employed in the current article
involve the Steffensen inequality and a variety of bounds related to the Čebyšev

functional. There have been some developments in both of these in the recent past
with which the current author has been involved. These have been put to fruitful
use in a variety of areas of applied mathematics including quadrature rules, in the
approximation of integral transforms, as well as in applied probability problems
(see [31], [22] and [11]. This article is a review of these developments and some
new results are also presented.

It is intended that in the current article the techniques will be utilised to ob-
tain useful bounds for special functions. The methodologies will be demonstrated
through obtaining bounds for the Bessel function of the first kind, the Beta func-
tion and the Zeta function.

It is instructive to introduce some techniques for approximating and bounding
integrals of the product of functions. We first present inequalities due to Stef-

fensen and then review bounds for the Čebyšev functional.
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The following theorem is due to sc Steffensen [45] (see also [11] and [16]).

Theorem 1. Let h : [a, b] → R be a nonincreasing mapping on [a, b] and g : [a, b] →
R be an integrable mapping on [a, b] with

−∞ < φ ≤ g (t) ≤ Φ <∞ for all x ∈ [a, b] ,

then

(1.1) φ
b−λ∫
a

h (x) dx+ Φ
b∫

b−λ

h (x) dx ≤
b∫

a

h (x) g (x) dx

≤ Φ
a+λ∫
a

h (x) dx+ φ
b∫

a+λ

h (x) dx,

where

(1.2) λ =
b∫

a

G (x) dx, G (x) =
g (x) − φ

Φ − φ
, Φ 6= φ.

Remark 1. We note that the result (1.1) may be rearranged to give Steffensen’s
better known result that

b∫
b−λ

h (x) dx ≤
b∫
a

h (x)G (x) dx ≤
a+λ∫
a

h (x) dx,

where λ is as given by (1.2) and 0 ≤ G (x) ≤ 1.

Equation (1.3) has a very pleasant interpretation, as observed by Stef-

fensen, that if we divide by λ then

(1.4)
1

λ

b∫

b−λ

h (x) dx ≤

b∫
a

G (x)h (x) dx

b∫
a

G (x) dx

≤ 1

λ

a+λ∫

a

h (x) dx.

Thus, the weighted integral mean of h (x) is bounded by the integral means over
the end intervals of length λ, the total weight.

Now, for two measurable functions f, g : [a, b] → R, define the functional,
which is known in the literature as Čebyšev’s functional, by

(1.5) T (f, g) := M (fg) −M (f)M (g) ,

where the integral mean is given by

(1.6) M (f) :=
1

b− a

b∫

a

f (x) dx.
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The integrals in (1.5) are assumed to exist.

The weighted Čebyšev functional is defined by

(1.7) T (f, g; p) := M (fg; p) −M (f ; p)M (g; p) ,

where the weighted integral mean M (f ; p) is given by

(1.8) P ·M (f ; p) =
b∫

a

p (x) f (x) dx, P =
b∫

a

p (x) dx

with the weight P satisfying 0 < P <∞.

We note that

T (f, g; 1) ≡ T (f, g) and M (f ; 1) ≡ M (f) .

We further note that bounds for (1.5) and (1.7) may be looked upon as approx-
imating the integral mean of the product of functions in terms of the product of
integral means which are more easily calculated explicitly. Bounds are perhaps
best procured from identities. It is worthwhile noting that a number of identities
relating to the Čebyšev functional already exist. (The reader is referred to [40]
Chapters IX and X.) Korkine’s identity is well known, see [40, p. 296] and is
given by

(1.9) T (f, g) =
1

2 (b− a)
2

b∫

a

b∫

a

(
f (x) − f (y)

)(
g (x) − g (y)

)
dxdy.

It is identity (1.9) that is often used to prove an inequality due to Grüss for
functions bounded above and below, [40].

The Grüss inequality [35] is given by

(1.10) |T (f, g)| ≤ 1

4
(Φf − φf ) (Φg − φg) ,

where φf ≤ f (x) ≤ Φf for x ∈ [a, b] , with φf , Φf constants and similarly for g (x) .

The interested reader is also referred to Dragomir [30] and Fink [34] for
extensive treatments of the Grüss and related inequalities.

Identity (1.9) may also be used to prove the Čebyšev inequality which states
that for f (·) and g (·) synchronous, namely (f (x) − f (y)) (g (x) − g (y)) ≥ 0, a.e.
x, y ∈ [a, b] , then

(1.11) T (f, g) ≥ 0.

As mentioned earlier, there are many identities involving the Čebyšev functional
(1.5) or more generally (1.7). Recently, Cerone [11] obtained, for f, g : [a, b] → R
where f is of bounded variation and g continuous on [a, b] , the identity

(1.12) T (f, g) =
1

(b− a)2

b∫

a

ψ (t) df(t),
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where

(1.13) ψ (t) = (t− a)G (t, b) − (b− t)G (a, t)

with

(1.14) G (c, d) =
d∫
c

g (x) dx.

The following theorem was proved in [11].

Theorem 2. Let f, g : [a, b] → R, where f is of bounded variation and g is
continuous on [a, b] . Then

(1.15) (b − a)
2 |T (f, g)| ≤






sup
t∈[a,b]

|ψ (t)|
b∨
a

(f) ,

L
∫ b

a
|ψ (t)| dt, for f L− Lipschitzian,

∫ b

a
|ψ (t)| df (t) , for f monotonic nondecreasing,

where
b∨
a

(f) is the total variation of f on [a, b] .

The bounds for the Čebyšev functional were utilised to procure approxima-
tions to moments and moment generating functions in [11] and [24].

The reader is referred to [31] and the references therein for applications to
numerical quadrature of trapezoidal and Ostrowski functionals, which were shown
to be related to the Čebyšev functional in [15].

For other Grüss type inequalities, see the books [9] and [40], and the papers
[19], [23], [26], [29], [30], where further references are given.

Recently, Cerone and Dragomir [19]–[23] have pointed out generalisa-
tions of the above results for integrals defined on two different intervals and more
generally in a measurable space setting (see also, [8] and [14]).

The functional T (f, g; p) defined in (1.7) satisfies a number of identities in-
cluding that due to Sonin [42]

(1.16) P · |T (f, g; p)| =

∣∣∣∣∣
b∫

a

p (x)
(
f (x) − γ

)(
g (x) −M (g; p)

)
dx

∣∣∣∣∣

from which the following bounds may be procured. Namely,

(1.17) P · |T (f, g; p)| ≤






inf
γ∈R

‖f (·) − γ‖
b∫

a

p (x) |g (x) −M (g; p)| dx,

(
b∫

a

p (x) (f (x) −M (f ; p))
2
dx

)1/2

×
(

b∫
a

p (x) (g (x) −M (g; p))2 dx

)1/2

,
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where

(1.18)
b∫

a

p (x) (h (x) −M (h; p))
2
dx =

b∫
a

p (x) h2 (x) dx− P ·M2 (h; p)

and P is as defined in (1.8). Further, it may be easily shown by direct calculation
that,

(1.19) inf
γ∈R

[
b∫
a

p (x) (f (x) − γ)
2
dx

]
=

b∫
a

p (x)
(
f (x) −M (f ; p)

)2
dx.

Some of the above results are used to find bounds for the Bessel function
(Section 2), the Beta function (Section 3), the Zeta function (Section 4) (see also
[9] for further details).

2. BOUNDING THE BESSEL FUNCTION

In this section we investigate techniques for determining bounds on the Bessel

function of the first kind (see also [12], [13]).

In Abramowitz and Stegun [1] equation (9.1.21) defines the Bessel of the
first kind

(2.1) Jν (z) = γν (z)
1∫
0

(
1 − t2

)ν− 1

2 cos (zt) dt, Re (ν) > −1

2
,

where

(2.2) γν (z) =
2
(

z

2

)ν

√
π Γ
(
ν +

1

2

) .

For the current work the interest is in both z and ν real.

Theorem 3. For z real then

(2.3)
1

2
B

(
1

2
, ν +

1

2

)
−B

(
1

2
, ν +

1

2
; (1 − λ)

2

)

≤ Jν (z)

γν (z)

≤ B

(
1

2
, ν +

1

2
;λ2

)
− 1

2
B

(
1

2
, ν +

1

2

)
, ν >

1

2

and

(2.4) B

(
1

2
, ν +

1

2
;λ2

)
− 1

2
B

(
1

2
, ν +

1

2

)
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≤ Jν (z)

γν (z)

≤ 1

2
B

(
1

2
, ν +

1

2

)
−B

(
1

2
, ν +

1

2
; (1 − λ)

2

)
, −1

2
< ν <

1

2
,

where

(2.5) B (α, β;x) =

∫ x

0

uα−1 (1 − u)
β−1

du, the incomplete Beta function,

(2.6) B (α, β) = B (α, β; 1) =
Γ (α) Γ (β)

Γ (α+ β)
, the Beta function,

and

(2.7) 2λ− 1 =
sin z

z
.

Taking ν =
1

2
produces equality in (2.3) and (2.4), namely, J 1

2

(z) = γ 1

2

(z)
sin z

z
.

Proof. Consider the case ν >
1

2
then h (t) =

(
1 − t2

)ν− 1

2 is nonincreasing for

t ∈ [0, 1] . Further, taking g (t) = cos zt we have that −1 ≤ g (t) ≤ 1 for t ∈ [0, 1]
and, from (1.2)

λ =
1

2

1∫

0

(cos zt+ 1) dt =
1

2

(
1 +

sin z

z

)
.

Utilising Theorem 1 and after some algebra, the above results are procured. �

Remark. We note from (2.1) that we may obtain a classical bound (see [1, p.
362]) for Jν (z) , namely

|Jν (z)| ≤
2

(
|z|
2

)ν

√
πΓ
(
ν +

1

2

)
1∫

0

(
1 − t2

)ν− 1

2 dt,

where from (2.5) and (2.6)

(2.8)

1∫

0

(
1 − t2

)ν− 1

2 dt =
1

2
B

(
1

2
, ν +

1

2

)
=

1

2
·
Γ
(

1

2

)
Γ
(
ν +

1

2

)

Γ (ν + 1)

to give

(2.9) |Jν (z)| ≤
∣∣∣
z

2

∣∣∣
ν 1

Γ (ν + 1)
.
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The following theorem gives a bound on the deviation of the Bessel function
from an approximant (see also [17]). This is accomplished via bounds on the
Čebyšev functional for which there are numerous results.

Theorem 4. The following result holds for the Bessel function of the first kind
Jν (z) . Namely,

(2.10)

∣∣∣∣∣∣
Jν (z) −

(
z

2

)ν

Γ (ν + 1)
· sin z

z

∣∣∣∣∣∣

≤
( |z|

2

)ν


 2√
π
· Γ (2ν)

Γ2
(
ν +

1

2

)
Γ
(
2ν +

1

2

) − 1

Γ2 (ν + 1)




1/2

×
[(cos z

4

)2

+
1

2
−
(

sin z

z
− cos z

4

)2
]1/2

.

Proof. (Sketch) We use the 2−norm result for the Čebyšev functional. From
(2.1) and (2.2) consider,

(2.11) Qν (z) =
Jν (z)

γν (z)
=

1∫

0

(
1 − t2

)ν− 1

2 cos (zt) dt.

Let f (t) =
(
1 − t2

)ν− 1

2 and g (t) = cos zt. �

3. BOUNDING THE BETA FUNCTION

The incomplete beta function is defined by

(3.1) B (x, y; z) =
z∫
0

tx−1 (1 − t)y−1 dt, 0 < z ≤ 1.

We shall restrict our attention to x > 1 and y > 1.

In this region we observe that

(3.2) 0 ≤ tx−1 ≤ zx−1 and (1 − z)
y−1 ≤ (1 − t)

y−1 ≤ 1

with tx−1, an increasing function and (1 − t)
y−1

, a decreasing function, for t ∈ [0, z] .

The following theorem follows from utilizing Steffensen’s result as depicted
in Theorem 1 [12], see also [17] for details.

Theorem 5. For x > 1 and y > 1 with 0 ≤ z ≤ 1 we have the incomplete Beta
function defined by (3.1) satisfying the following bounds

(3.3) max {L1 (z) , L2 (z)} ≤ B (x, y; z) ≤ min {U1 (z) , U2 (z)} ,
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where

(3.4) L1 (z) =
zx−1

y

[(
1 − z +

z

x

)y

− (1 − z)y
]
, U1 (z) =

zx−1

y

[
1 −

(
1 − z

x

)y]

and

(3.5) L2 (z) =
λ x

2 (z)

x
+ (1 − z)

y−1 z
x − λ x

2 (z)

x
,

U2 (z) = (1 − z)
y−1

(
x− λ2 (z)

)x

x
+
zx −

(
z − λ2 (z)

)x

x

with

(3.6) λ2 (z) =
1 − (1 − z) [1 − z (1 − y)]

y
[
1 − (1 − z)

y−1
] .

Proof. (Using Steffensen’s inequality) If we take h (t) = (1 − t)
y−1

and g (t) =
tx−1, then for y > 1 and x > 1, h (t) is a decreasing function of t and 0 ≤ g (t) ≤
zx−1. Thus, from (1.1)

(3.7) zx−1
z∫

z−λ1

(1 − t)y−1 dt ≤
z∫
0

tx−1 (1 − t)y−1 dt ≤ zx−1
λ1∫
0

(1 − t)y−1 dt,

where

λ1 = λ1 (z) =

z∫

0

tx−1

zx−1
dt =

z

x
. �

Corollary 1. For x > 1 and y > 1 we have the Beta function

B (x, y) =
1∫
0

tx−1 (1 − t)y−1 dt,

which is symmetric in x and y, satisfies the following bounds ,

(3.8) max

{
1

xyx
,

1

yxy

}
≤ B (x, y)

≤ min

{
1

y

[
1 −

(
1 − 1

x

)y]
,
1

x

[
1 −

(
1 − 1

y

)x]}
.

Proof. Put z = 1 in (3.6) to give λ2 (1) =
1

y
followed by the obvious correspon-

dences from (3.3)–(3.5). �

The following theorem relates to the Beta function [17] and is a correction
of the result in [12].
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Theorem 6. For x > 1 and y > 1 the following bounds hold for the Beta function,
namely ,

(3.9) 0 ≤ 1

xy
−B (x, y) ≤ 2 min {A (x) , A (y)} ,

where

(3.10) A (x) =
x− 1

x

(
1+

x
x−1

) .

Proof. (Sketch. Using the Čebyšev functional and Sonin identity). We have
from (1.16)–(1.17) with p (·) ≡ 1,

0 ≤ |T (f, g)| = |M (fg) −M (f)M (g)| ≤ M (|f (·) − γ| |g (·) −M (g)|) .

That is,

(3.11) |T (f, g)| ≤ inf
γ
‖f (·) − γ‖∞ M|g (·) −M (g)| .

If we take f (t) = tx−1, g (t) = (1 − t)
y−1

then M (f) =
1

x
and M (g) =

1

y
. �

The following pleasing result is valid ([12], [17]).

Theorem 7. For x > 1 and y > 1 we have

(3.12) 0 ≤ 1

xy
−B (x, y) ≤ x− 1

x
√

2x− 1
· y − 1

y
√

2y − 1
≤ 0.090169437 . . . ,

where the upper bound is obtained at x = y =
3 +

√
5

2
= 2.618033988 . . . .

Proof. (Using the 2-norm bound for the Čebyšev functional) We have from
(1.17)–(1.19)

(b− a) |T (f, g)| ≤
(

b∫
a

f2 (t) dt−M2 (f)

)1/2

×
(

b∫
a

g2 (t) dt−M2 (g)

)1/2

.

That is, taking f (t) = tx−1, g (t) = (1 − t)
y−1

.

Now, consider

(3.13) C (x) =
x− 1

x
√

2x− 1
.

The maximum occurs when x = x∗ =
3 +

√
5

2
to give C (x∗) = 0.3002831 . . . .

Hence, because of the symmetry we have the upper bound as stated in (3.12). �
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Remark 3. In a recent paper Alzer [4] shows that

0 ≤ 1

xy
−B (x, y) ≤ bA = max

x≥1

(
1

x2
− Γ2 (x)

Γ (2x)

)
= 0.08731 . . . ,

where 0 and bA are shown to be the best constants. This uniform bound of Alzer

is only smaller for a small area around

(
3 +

√
5

2
,
3 +

√
5

2

)
while the first upper

bound in (3.12) provides a better bound over a much larger region of the x − y
plane.

We may state the following corollary given the results above.

Corollary 2. For x > 1 and y > 1 we have

0 ≤ 1

xy
−B (x, y) ≤ min {C (x)C (y) , bA} ,

where C (x) is defined by (3.13) and bA by (3.14).

Remark 4. The upper bound in Theorem 6 by numerical investigation, seems
not to be as good as that given in Theorem 7. Analytically, the transformation

χ =
x − 1

x
and η =

y − 1

y
in (3.9)–(3.12) results in requiring to show that

H(χ, η) = 2(1 − χ)
1

χ − η

√
1 − χ

1 + χ
· 1 − η

1 + η
≥ 0

for 0 ≤ χ, η ≤ 1.

4. BOUNDS FOR THE EULER ZETA AND RELATED FUNCTIONS

4.1. BACKGROUND TO ZETA AND RELATED FUNCTIONS

The Zeta function ([10])

(4.1) ζ(x) :=

∞∑

n=1

1

nx
, x > 1

was originally introduced in 1737 by the Swiss mathematician Leonhard Euler

(1707-1783) for real x who proved the identity

(4.2) ζ(x) :=
∏

p

(
1 − 1

px

)−1

, x > 1,

where p runs through all primes. It was Riemann who allowed x to be a complex
variable z and showed that even though both sides of (4.1) and (4.2) diverge for
Re (z) ≤ 1, the function has a continuation to the whole complex plane with a
simple pole at z = 1 with residue 1. The function plays a very significant role
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in the theory of the distribution of primes (see [5], [7], [27], [32], [37] and [46]).
One of the most striking properties of the zeta function, discovered by Riemann

himself, is the functional equation

(4.3) ζ(z) = 2zπz−1 sin
(πz

2

)
Γ(1 − z)ζ(1 − z)

that can be written in symmetric form to give

(4.4) π−
z
2 Γ
(z

2

)
ζ(z) = π−

(
1−z
2

)
Γ

(
1 − z

2

)
ζ(1 − z).

ζ(s) is commonly referred to as the Riemann Zeta function and if s is restricted
to a real variable x, it is referred to as the Euler Zeta function.

In addition to the relation (4.3) between the zeta and the gamma function,
these functions are also connected via the integrals [32]

(4.5) ζ(x) =
1

Γ(x)

∞∫

0

tx−1

et − 1
dt, x > 1,

and

(4.6) ζ(x) =
1

C(x)

∞∫

0

tx−1

et + 1
dt, x > 0,

where

(4.7) C(x) := Γ(x)
(
1 − 21−x

)
and Γ (x) =

∞∫
0

e−ttx−1dt.

In the series expansion

(4.8)
text

et − 1
=

∞∑

m=0

Bm (x)
tm

m!
,

where Bm (x) are the Bernoulli polynomials (after Jacob Bernoulli), Bm (0) =
Bm are the Bernoulli numbers. They occurred for the first time in the formula
[1, p. 804]

(4.9)

m∑

k=1

kn =
Bn+1(m+ 1) −Bn+1

n+ 1
, n,m = 1, 2, 3, . . . .

One of Euler’s most celebrated theorems discovered in 1736 (Institutiones Calculi
Differentialis, Opera (1), Vol. 10) is

(4.10) ζ(2n) = (−1)n−1 22n−1π2n

(2n)!
B2n; n = 1, 2, 3, . . . .
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The Zeta function is also explicitly known at the non-positive integers by

ζ(−n) = (−1)
n Bn+1

n+ 1
, for n = 1, 2, . . .

The result may also be obtained in a straight forward fashion from (4.6) and a
change of variable on using the fact that

(4.11) B2n = (−1)n−1 · 4n
∞∫

0

t2n−1

e2πt − 1
dt

from Whittaker and Watson [48, p. 126].

We note here that

ζ(2n) = Anπ
2n,

where

An = (−1)
n−1 · n

(2n+ 1)!
+

n−1∑

j=1

(−1)j−1

(2j + 1)!
An−j

and A1 =
1

3!
.

Further, the Zeta function for even integers satisfy the relation (Borwein et
al. [7], Srivastava [43])

ζ(2n) =

(
n+

1

2

)−1 n−1∑

j=1

ζ(2j) ζ(2n− 2j), n ∈ N \ {1} .

Despite several efforts to find a formula for ζ(2n + 1), there seems to be no
elegant closed form representation for the zeta function at the odd integer val-
ues. Several series representations for the value ζ(2n + 1) have been proved by
Srivastava and co-workers in particular, see [43], [44].

There are also integral representations for ζ (n+ 1), see [1, p. 807] and [28].

Both series representations and the integral representations are however some-
what difficult in terms of computational aspects and time considerations.

We note that there are functions that are closely related to ζ (x) . Namely,
the Dirichlet η (·) and λ (·) functions given by

(4.12) η (x) =

∞∑

n=1

(−1)
n−1

nx
=

1

Γ (x)

∫ ∞

0

tx−1

et + 1
dt, x > 0

and

(4.13) λ (x) =

∞∑

n=0

1

(2n+ 1)x =
1

Γ (x)

∫ ∞

0

tx−1

et − e−t
dt, x > 0.
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These are related to ζ (x) by

(4.14) η (x) =
(
1 − 21−x

)
ζ (x) and λ (x) =

(
1 − 2−x

)
ζ (x)

satisfying the identity

(4.15) ζ (x) + η (x) = 2λ (x) .

It should be further noted that explicit expressions for both of η (2n) and
λ (2n) exist as a consequence of the relation to ζ (2n) via (4.14).

4.2. RESULTS FOR THE ZETA FUNCTION

Lemma 1. The following identity involving the Zeta function holds. Namely ,

(4.16)

∞∫

0

tx

(et + 1)2
dt = C (x+ 1) ζ (x+ 1) − xC (x) ζ (x) , x > 0,

where C (x) is as given by (4.7).

Based on the identity in Lemma 1, the following theorem was developed (see
Alzer [2], Cerone et al. [18], and also [10] where the constants in the bounds of
(4.17) were developed.

Theorem 8. For real numbers x > 0 we have

(4.17)

(
ln 2 − 1

2

)
b (x) < ζ (x+ 1) −

(
1 − b (x)

)
ζ (x) <

b (x)

2
,

where

(4.18) b (x) =
1

2x − 1
,

and the constants ln 2 − 1

2
and

1

2
are sharp.

The following is a correction of a result obtained by the author [13] by utilising
the Čebyšev functional bounds given by (1.17) and (4.5).

Theorem 9. For α > 0 the Zeta function satisfies the inequality

(4.19)

∣∣∣∣ζ (α+ 1) − 2α−1

α
· π

2

6

∣∣∣∣ ≤
κ · 2α−

1

2

Γ (α+ 1)

(
Γ (2α− 1) − Γ2 (α)

) 1

2 ,

where

(4.20) κ =

[
π2

(
1 − π2

72

)
− 7ζ (3)

] 1

2

= 0.319846901 . . .
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with equality obtained at α = 1.

The following theorem was obtained in [17] utilising bounds for the Čebyšev

functional.

Theorem 10. For α > 1 and m = bαc the zeta function satisfies the inequality

(4.21)

∣∣∣∣ζ (α+ 1) − 2α−m Γ (m+ 1)

Γ (α+ 1)
ζ (m+ 1)Γ (α−m+ 1)

∣∣∣∣

≤ 2

(
α−m+

1

2

)

Γ (α+ 1)
· Em ·

(
Γ (2α− 2m+ 1) − Γ2 (α−m+ 1)

) 1

2 ,

where

(4.22) E 2
m = 22mΓ (2m+ 1)

(
λ (2m) − λ (2m+ 1)

)
− 1

2
Γ2 (m+ 1) ζ2 (m+ 1) ,

with λ (·) given by (4.13). Equality in (4.21) results when α = m.

Proof. (Sketch using the Čebyšev Functional Approach). Let

(4.23) τ (α) = Γ (α+ 1) ζ (α+ 1) =

∞∫

0

xα

ex − 1
dx

=

∞∫

0

e−x/2 xm

ex/2 − e−x/2
· xα−m dx, α > 1

where m = bαc .
Make the associations

(4.24) p (x) = e−x/2, f (x) =
xm

ex/2 − e−x/2
, g (x) = xα−m

then we have from (1.17)
(4.25) 





P =

∞∫

0

e−x/2 dx = 2,

M (f ; p) =
1

2

∞∫

0

e−x/2xm

ex/2 − e−x/2
dx =

1

2
Γ (m+ 1) ζ (m+ 1) ,

M (g; p) =
1

2

∞∫

0

e−x/2xα−m dx = 2α−mΓ (α−m+ 1) . �

The following corollary provides upper bounds for the zeta function at odd
integers.
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Corollary 3. The inequality

(4.26) Γ (2m+ 1)
(
2 ·
(
22m − 1

)
ζ (2m) −

(
22m+1 − 1

)
ζ (2m+ 1)

)

− Γ2 (m+ 1) ζ2 (m+ 1) > 0

holds for m = 1, 2, . . . .

Proof. From equation (4.22) of Theorem 10, we have E 2
m > 0. Utilising the

relationship between λ (·) and ζ (·) given by (4.14) readily gives the inequality
(4.26). �

Remark 5. In (4.26), if m is odd, then 2m andm+1 are even so that an expression
in the form

(4.27) α (m) ζ (2m) − β (m) ζ (2m+ 1) − γ (m) ζ2 (m+ 1) > 0,

results, where

(4.28)

α (m) = 2
(
22m − 1

)
Γ (2m+ 1) ,

β (m) =
(
22m+1 − 1

)
Γ (2m+ 1) and

γ (m) = Γ2 (m+ 1) .

Thus for m odd we have

(4.29) ζ (2m+ 1) <
α (m) ζ (2m) − γ (m) ζ2 (m+ 1)

β (m)
.

That is, for m = 2k − 1, we have from (4.29)

(4.30) ζ (4k − 1) <
α (2k − 1) ζ (4k − 2) − γ (2k − 1) ζ2 (2k)

β (2k − 1)

giving for k = 1, 2, 3, for example,

ζ (3) <
π2

7

(
1 − π2

72

)
= 1.21667148,

ζ (7) <
2π6

1905

(
1 − π2

2160

)
= 1.00887130,

ζ (11) <
62π10

5803245

(
1 − π2

492150

)
= 1.00050356.

The above bound for ζ (3) was obtained previously by the author in [13] from
(4.20).

If m is even then for m = 2k we have from (4.29)

(4.31) ζ (4k + 1) <
α (2k) ζ (4k) − γ (2k) ζ2 (2k + 1)

β (2k)
, k = 1, 2, . . . .
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We notice that in (4.31), or equivalently (4.27) with m = 2k there are two zeta
functions with odd arguments. There are a number of possibilities for resolving this,
but firstly it should be noticed that ζ (x) is monotonically decreasing for x > 1 so
that ζ (x1) > ζ (x2) for 1 < x1 < x2.

Firstly, we may use lower bounds obtained in [10], namely

L (x) = (1 − b (x)) ζ (x) +

(
ln 2 − 1

2

)
b (x) or L2 (x) =

ζ (x+ 2) − b (x + 1)

2
1 − b (x+ 1)

,

where b (x) is given by (4.18).

However, from numerical investigation in [10], it seems that L2 (x) > L (x)
for positive integer x and so we have from (4.31)

(4.32) ζL (4k + 1) <
α (2k) ζ (2k) − γ (2k)L 2

2 (2k)

β (2k)
,

where we have used the fact that L2 (x) < ζ (x+ 1) .

Secondly, since the even argument ζ (2k + 2) < ζ (2k + 1) , then from (4.31)
we have

(4.33) ζE (4k + 1) <
α (2k) ζ (4k) − γ (2k) ζ2 (2k + 2)

β (2k)
.

Finally, we have that ζ (m+ 1) > ζ (2m+ 1) so that from (4.27) we have, with
m = 2k on solving the resulting quadratic equation that

(4.34) ζQ (4k + 1) <
−β (2k) +

√
β2 (2k) + 4γ (2k)α (2k) ζ (4k)

2γ (2k)
.

For k = 1 we have from (4.32)–(4.34) that

ζL (5) <
π4

93
− 1

186

(
7π4

540
− 1

12

)2

= 1.039931461,

ζE (5) <
π4

93

(
1 − π4

16200

)
= 1.041111605,

ζQ (5) < − 93 +
√

8649 + 2π4 = 1.04157688;

and for k = 2

ζL (9) <
17

160965
π8 − 1

35770

(
31

28350
π6 − 1

60

)2

= 1.002082506,

ζE (9) <
17

160965
π8

(
1 − π4

337650

)
= 1.0020834954,

ζQ (9) < − 17885 +
1

3

√
2878859025+ 34π8 = 1.00208436.
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It should be noted that the above results give tighter upper bounds for the odd zeta
function evaluations than were possible using the methodology utilising techniques
based around Theorem 8 as demonstrated by the numerics which are presented in
Table 1 of [10].

Numerical experimentation using Maple seems to indicate that the upper
bounds for

ζL (4k + 1) , ζE (4k + 1) and ζQ (4k + 1)

are in increasing order. Analytic demonstration that ζL (4k + 1) is better remains
an open problem.

5. CONCLUDING REMARKS

In the paper the usefulness of some recent results in the analysis of inequal-
ities, has been demonstrated through application to some special functions. Al-
though these techniques have been applied in a variety of areas of applied mathe-
matics, their application to special functions does not seem to have received much
attention to date. There are many special functions which may be represented as
the integral of products of functions. The investigation in the current article has
restricted itself to the investigation of the Bessel function of the first kind, the
Beta function and the Zeta function.

It may be surmised from the above investigations that the accuracy of the
bounds over particular regions of parameters cannot be ascertained a priori. It
has been demonstrated, however, that some useful bounds may be obtained which
have hitherto do not seem to have been discovered. The approach of utilising
developments in the field of inequalities to special functions has been shown to
have the potential for further development.

A general investigation of Dirichlet series has also been undertaken in [20],
[21] utilising convexity arguments and it is shown that in particular

(5.1) ζ (s+ 1) ≤ A
(

1

ζ (s)
,

1

ζ (s+ 2)

)
≤ G

(
ζ (s) , ζ (s+ 2)

)

where A (·, ·) is the arithmetic mean and G (·, ·) the geometric mean.

Specifically, for s = 2n, then

(5.2) ζ (2n+ 1) ≤ H
(
ζ (2n) , ζ (2n+ 2)

)
≤ G

(
ζ (2n) , ζ (2n+ 2)

)
,

where the harmonic mean

H (α, β) =
G2 (α, β)

A (α, β)
= A

(
1

α
,
1

β

)
.

The reader may also wish to refer to the papers [3] and [6] which provide
some results using monotonicity and convexity arguments.
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