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BOUNDS ON THE FIRST NONZERO EIGEN-

VALUE FOR SELF-ADJOINT BOUNDARY

VALUE PROBLEMS ON NETWORKS

E. Bendito, A. Carmona, A. M. Encinas, J. M. Gesto

We aim here at obtaining bounds on the first nonzero eigenvalue for self-
adjoint boundary value problems on a weighted network by means of equilib-
rium measures, that include the study of Dirichlet, Neumann and Mixed
problems. We also show the sharpness of these bounds throughout the analy-
sis of some examples. In particular we emphasize the case of distance-regular
graphs and we show that the obtained bounds are better than those known
until now.

1. INTRODUCTION

In this paper we analyze self-adjoint eigenvalue problems on a subset of a
weighted network for the Laplace-Beltrami operator. Specifically, we concen-
trate on obtaining lower and upper bounds on the first nonzero eigenvalue associ-
ated with each problem.

Network eigenvalues have many applications in combinatorics and in other
fields of mathematics. In the literature the mainly considered problems are those
that concern with the Dirichlet eigenvalue problem and with the Poisson equa-
tion, see [3,4,6,7,9]. Some works involve the study of Neumann eigenvalues (see
[3,8]), but no one considers the Dirichlet-Neumann boundary value problem.
Here we firstly show that the study of eigenvalue problems can be reduced to the
study of either a Dirichlet eigenvalue problem or a Poisson eigenvalue prob-
lem in a suitable network associated with the initial problem. Hence we obtain
a new variational characterization of the first nonzero eigenvalue associated with
each problem.

The techniques used here are the habitual in this context; that is to apply to
a particular function a discrete version of the Green’s Identity and the variational
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characterization of eigenvalues. The novelty lies in the functions that we consider,
namely the equilibrium measure for suitable subsets of the network. The equilib-
rium measures in the context of finite networks were introduced by the authors in
[1], where it was proved that these measures contain valuable information about
the connection between vertices of a subset as well as the connection between the
set and its complement. These properties were also made clear in [2] where we
showed that the Green’s Function of any self-adjoint boundary value problem on
a network can be expressed in a simple form in terms of equilibrium measures. In
addition, it must be noted that the equilibrium measure can be obtained either as
the solution of a linear programming problem in which the Laplacian acts as the
coefficient matrix of the general linear constraints or as the solution of a quadratic
convex programming problem in which the Laplacian defines the objective function.

If one thinks about which functions are naturally associated with an arbitrary
set in a general network, the Dirac measures and the characteristic function of the
set are more likely to be considered as candidates, but they only express whether a
vertex is in or out of the set and they say nothing about the connectivity between
vertices of the set. Therefore, if we try to consider functions that should take
into account both aspects, the natural choice is not other one that the equilibrium
measure of the set. We make the efficacy of this choice clear throughout some
examples. Moreover we pay special attention to distance-regular graphs since in
this type of graph the equilibrium measures can be computed by hand.

2. PRELIMINARIES

Throughout the paper Γ = (V, E) denotes a simple and finite connected graph
without loops, with vertex set V , edge set E, order n and size m. Two different
vertices, x, y ∈ V , are called adjacent, which is represented by x ∼ y, if {x, y} ∈ E.
The cardinality of F ⊂ V is denoted by |F |.

For each x ∈ V and for each j ∈ N we denote by Sj(x) and by Bj(x) the sphere

and the ball of center x and radius j; that is, the sets Sj(x) = {y ∈ V : d(x, y) = j}
and Bj(x) = {y ∈ V : d(x, y) ≤ j}, where d(x, y) is the length of the shortest path
joining x and y.

Fix a vertex subset F ⊂ V . We denote by F c its complement in V and we
also consider the following vertex subsets associated with F :

(i) Interior of F :
◦

F= {x ∈ V : B1(x) ⊂ F}.

(ii) Boundary of F : δ(F ) = {x ∈ V : d(x, F ) = 1}.

(iii) Closure of F : F̄ = {x ∈ V : d(x, F ) ≤ 1} = F ∪ δ(F ).

A dominating set in Γ is a subset F ⊂ V such that each element of F c is
adjacent to a vertex of F . Clearly a set is dominating iff F̄ = V or equivalently
◦

F c= ∅.

We denote by C(V ) or C(V × V ) the sets of real functions defined on V and
on V ×V , respectively. In addition for each nonempty set F ⊂ V we denote by χ

F
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its characteristic function and by C(F ) the set of real functions on V that vanish
in F c. If u ∈ C(V ), the value

∑

x∈F

u(x) is denoted by
∫

F

u dx.

We call a weighted network a triple (Γ, c, ν), where c ∈ C(V ×V ) is a symmetric
function such that c(x, y) > 0 when x ∼ y and c(x, y) = 0 otherwise and ν ∈ C(V )
verifies that ν(x) > 0 for each x ∈ V . If x ∈ V , the number k(x) =

∫

V

c(x, y) dy is

called the (generalized) degree of x. In addition, if F ⊂ V is a proper subset, for
any x ∈ F the value k+

F
(x) =

∫

δ(F )

c(x, y) dy is called out-degree of x whereas, when

x ∈ F c, the value k−
F

(x) =
∫

δ(F c)

c(x, y) dy is called in-degree of x. Observe that F

is a dominating set iff k−
F > 0 or, equivalently, iff k+

F c > 0.

In what follows, if F ⊂ V is nonempty, we consider for any u ∈ C(F ) the
values

‖u‖1,ν =
∫

F

|u| ν dx and ‖u‖2,ν =

(

∫

F

u2 ν dx

)1/2

and we define the volume of F as volν(F ) = ‖χ
F
‖1,ν . We omit the subscript ν in

all the above expressions when ν(x) = 1 for all x ∈ V . In this case vol(F ) = |F |.

The Laplace-Beltrami operator of a weighted network (Γ, c, ν) is the linear
operator L : C(V ) → C(V ) that assigns to each u ∈ C(V ) the function

(1) L(u)(x) =
1

ν(x)

∫

V

c(x, y)
(

u(x) − u(y)
)

dy, x ∈ V.

If F ⊂ V is a nonempty subset, for each u ∈ C(F̄ ) we define the conormal

derivative of u as the function belonging to C
(

δ(F )
)

given by

(2)
∂u

∂nF
(x) =

1

ν(x)

∫

δ(F c)

c(x, y)
(

u(x) − u(y)
)

dy, x ∈ δ(F ).

In [2] the so-called Green’s Identity was proved, namely

(3)

∫

F

vL(u) ν dx−

∫

F

uL(v) ν dx =

∫

δ(F )

u
∂v

∂nF
ν dx−

∫

δ(F )

v
∂u

∂nF
ν dx, u, v ∈ C(F̄ ).

For the case ν = 1 the existence of the so-called equilibrium measures for any
proper set was also proved. The techniques used there can easily be extended to
the general case. Specifically for any proper subset F ⊂ V there exists a unique
function γF ∈ C(F ), called the equilibrium measure of F , such that γF (x) > 0 for
any x ∈ F and L(γF ) = 1 on F . Moreover γF = I(F )−1σF , where (I(F )), σF ) is
the solution of the following quadratic convex programming problem:

I(F ) = min
u∈C(F )

{

∫

F

uL(u) ν dx : u ≥ 0, ‖u‖1,ν = 1
}

.
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Alternatively the pair (I(F )), σF ) is also the solution of the linear programming
problem

I(F ) = min
u∈C(F )

{a : u ≥ 0, ‖u‖1,ν = 1, L(u) ≤ aχ
F
} .

The following result shows the relevance of the equilibrium measures in study-
ing the topological properties of a subset.

Lemma 2.1. If F ⊂ V is a proper subset, then γF is constant on F iff k+
F is a

positive multiple of ν.

Proof. If γF = aχ
F
, then 1 = L(γF ) =

a

ν
k+

F on F . Conversely, if k+
F = aν, a > 0,

then γF =
1

a
χ

F
is the equilibrium measure of F . �

Note that the above Lemma says that a necessary condition that the equilib-
rium measure of F be constant is that F c is a dominating set.

Throughout the paper the so-called distance-regular graph plays an important
role. Therefore we introduce here its definition and the value of some equilibrium
measures associated with it, see [2].

A connected k-regular graph Γ = (V, E) with diameter D is called distance-
regular if there exist integers, bi, ci, i = 0, . . . , D, such that for any two vertices
x, y ∈ V at distance d(x, y) = i there are exactly ci neighbors of x in Si−1(y)
and bi neighbors of x in Si+1(y). Then for any vertex y ∈ V the values |Si(y)| and
|Bi(y)| do not depend on y and they are denoted by ki = |Si| and |Bi|, respectively.

Moreover |Bi| =
i

∑

j=0

kj , i = 0, . . . , D.

On the other hand the equilibrium measure of any ball in a distance-regular
graph has the following expression

(4) γBr(x) =

r
∑

s=|x|

|Bs|

ksbs
for any x ∈ Br,

where |x| denotes the distance between x and the center of the ball. In addition,
if γx denotes the equilibrium measure for the subset V \ {x}, for any x, y ∈ V we
have that

(5) γx(y) =

d(x,y)−1
∑

j=0

n − |Bj |

kjbj
.

3. EIGENVALUES FOR SELF-ADJOINT BOUNDARY VALUE

PROBLEMS

In [2] general self-adjoint boundary value problems were introduced in the
context of finite networks and an exhaustive study of their associated Green func-
tions was also carried out. In this paper we are concerned with another aspect of
this type of problem, namely the study of eigenvalue problems.
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Let (Γ, c, ν) be a weighted network and F ⊂ V a nonempty connected subset
with vertex boundary δ(F ) = H1∪H2, where H1∩H2 = ∅. A self-adjoint eigenvalue

problem on F for the Laplace-Beltrami operator, consists in finding λ ∈ R such that

there exists u ∈ C(F̄ ) nonzero verifying

(6) L(u) = λu on F,
∂u

∂nF
= 0 on H1, u = 0 on H2.

Problem (6) summarizes the different self-adjoint eigenvalue problems that
appear in the literature with proper names; that is,

(i) Dirichlet-Neumann eigenvalue problem when H1, H2 6= ∅.

(ii) Dirichlet eigenvalue problem when H2 = δ(F ) 6= ∅.

(iii) Neumann eigenvalue problem when H1 = δ(F ) 6= ∅.

(iv) Poisson eigenvalue problem when δ(F ) = ∅; that is when F = V .

It is well-known that the lowest eigenvalue of (6) is simple and nonnegative
and that an eigenfunction can be chosen to be a positive function on C(F ∪ H1).
Moreover the lowest eigenvalue is null for Neumann and Poisson problems and
their corresponding eigenfunctions are constant on F̄ .

In the sequel we denote by λ(F, H1, H2) the first nonzero eigenvalue for prob-
lem (6). It is also well-known that λ(F, H1, H2) can be characterized from a varia-
tional point of view as

(7) λ(F, H1, H2) = min
u∈C(F∪H1)

u6=0







∫

F

uL(u) ν dx

∫

F

u2ν dx
:

∂u

∂n
F

= 0 on H1 and a
∫

F

uν dx = 0







,

where a = 1 if H2 = ∅, which corresponds to either Neumann or Poisson prob-
lems, and a = 0 otherwise.

The question of bounding the first nonzero eigenvalue for both the Dirichlet
and Poisson problems on a network has been widely treated. However, this is not
the case for the other eigenvalue problems, specially in the case of Dirichlet-
Neumann problem the consideration of which is omitted in the literature. Some
authors have dealt with the Neumann eigenvalue problem, see for instance [3,5,8],
but the lower bounds for the eigenvalue are obtained only under strong constraints
on the type of subsets considered.

Our objective is to determine bounds for λ(F, H1, H2) in terms of equilibrium
measures. For this we proceed analogously to [2] and hence we firstly reduce prob-
lem (6) to either a Dirichlet eigenvalue problem or a Poisson eigenvalue problem
in a suitable network associated with the initial problem. The key idea is to notice
that, if the conormal derivative of a function is null at x ∈ δ(F ), then the value of
the function at this vertex is uniquely determined by the values of the function on
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F . Therefore in all cases the space of functions verifying the boundary conditions
is isomorphic to C(F ). Of course this result is only relevant when H1 6= ∅.

Lemma 3.1. The function

ηηηηηηηηηηηηηη
F,H1

: C(F ) → C(F ∪ H1),

given by ηηηηηηηηηηηηηη
F,H1

(u) = u−
ν

k−

F

∂u

∂n
F

χ
H1

, establishes an isomorphism between C(F ) and
{

u ∈ C(F ∪ H1) :
∂u

∂nF

= 0 on H1

}

.

From the above lemma and using the variational characterization of λ(F, H1, H2)
we obtain that

(8) λ(F, H1, H2) = min
v∈C(F )

v 6=0











∫

F

vL
(

ηηηηηηηηηηηηηη
F,H1

(v)
)

ν dx

‖v‖2
2,ν

, a
∫

F

vν dx = 0











since ηηηηηηηηηηηηηη
F,H1

(v) = v on F .

Next we show that the quadratic functional
∫

F

vL(ηηηηηηηηηηηηηη
F,H1

(v))ν dx is in fact the

quadratic functional associated with the Laplace-Beltrami operator of a suitable
network with vertex set F ∪H2. Therefore λ(F, H1, H2) appears either as the first
Dirichlet eigenvalue for the new network when H2 6= ∅ or as the first nonzero
Poisson eigenvalue for the new network when H2 = ∅. Specifically, given (Γ, c, ν)
a weighted network and F ⊂ V a proper connected subset, we define the function
b : (F ∪ H2) × (F ∪ H2) as

b(x, y) = c(x, y) +







∫

H1

c(x, z)c(y, z)

k−(z)
dz, x, y ∈ F and x 6= y,

0, otherwise.

Moreover we consider the weighted network (Γ̄
F
, b, ν) the vertex and edge sets of

which are F ∪ H2 and Ē = {{x, y} ∈ (F ∪ H2) × (F ∪ H2) : b(x, y) > 0}, respec-
tively. Note that in the new network the adjacency between vertices in F ∪ H2 is
maintained, but a new adjacency can appear between vertices of δ(F c) that have a
common neighbor in H1. Therefore F is a connected subset the boundary of which
is now H2. We also remark that, if (6) is a Poisson or a Dirichlet eigenvalue
problem, then the network (Γ̄

F
, b, ν) coincides with the network (Γ, c, ν).

Proposition 3.2. Let (Γ, c, ν) be a weighted network, L its Laplace-Beltrami op-

erator and F ⊂ V a proper connected subset. Then for any u, v ∈ C(F )

∫

F

vL
(

ηηηηηηηηηηηηηη
F,H1

(u)
)

ν dx =
∫

F

v L̄(u)ν dx,

where L̄ is the Laplace-Beltrami operator of the weighted network (Γ̄F , b, ν).
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Proof. Clearly it suffices to prove the equality
∫

F

εx L
(

ηηηηηηηηηηηηηη
F,H1

(εy)
)

ν dz =
∫

F

εx L̄(εy)ν dz

for any x, y ∈ F , where εx stands for the Dirac measure on x. If we consider
x, y ∈ F , then
∫

F

εx L
(

ηηηηηηηηηηηηηη
F,H1

(εy)
)

ν dz =
∫

V

c(x, z)
(

εy(x) − ηηηηηηηηηηηηηη
F,H1

(εy)(z)
)

dz

=

(

k(x)εy(x) −
∫

F

c(x, z)εy(z) dz −
∫

δ(F )

c(x, z)ηηηηηηηηηηηηηη
F,H1

(εy)(z) dz

)

=

(

k(x)εy(x) − c(x, y) −
∫

H1

c(x, z)c(y, z)

k−

F (z)
dz

)

.

Therefore, if x 6= y, we obtain that
∫

F

εx L
(

ηηηηηηηηηηηηηη
F,H1

(εy)
)

ν dz = −b(x, y) =
∫

F

εx L̄(εy)ν dz

whereas, when x = y,

∫

F

εx L
(

ηηηηηηηηηηηηηη
F,H1

(εx)
)

ν dz =

(

k(x) −
∫

H1

c(x, z)2

k−
F

(z)
dz

)

.

On the other hand
∫

F

εx L̄(εx)ν dz =
∫

F∪H2

b(x, y) dy

=

(

∫

F∪H2

c(x, y) dy +
∫

(F\{x})×H1

c(x, z)c(y, z)

k−(z)
dzdy

)

=

(

∫

F∪H2

c(x, y) dy +
∫

H1

c(x, z)

k−(z)

(

∫

F

c(y, z) dy
)

dz −
∫

H1

c(x, z)2

k−
F

(z)
dz

)

=

(

k(x) −
∫

H1

c(x, z)2

k−
F

(z)
dz

)

. �

Applying now the above proposition to Identity (8) we obtain that

(9) λ(F, H1, H2) = min
v∈C(F )

v 6=0











∫

F

v L̄(v)ν dx

‖v‖2
2,ν

, a
∫

F

vν dx = 0











;

that is, λ(F, H1, H2) is the first Dirichlet eigenvalue for F on the network
(Γ̄

F
, b, ν) when H2 6= ∅ or it is the first nonzero Poisson eigenvalue of the network
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(Γ̄
F
, b, ν) when H2 = ∅. Indeed the equality between the bilinear forms considered

in the above proposition implies that the self-adjoint boundary problems raised in
any of the networks are equivalent. Specifically we get the following result.

Corollary 3.3. Let (Γ, c, ν) be a weighted network, F ⊂ V a proper connected

subset and suppose that δ(F ) = H1 ∪ H2, where H1 ∩ H2 = ∅. Then u ∈ C(F )

satisfies L̄(u) = f on F iff v = ηηηηηηηηηηηηηηF,H1
(u) satisfies L(v) = f on F,

∂v

∂n
F

= 0 on

H1. In addition λ is an eigenvalue and u ∈ C(F ) is an associated eigenfunction

on (Γ̄F , b, ν) iff λ is an eigenvalue and ηηηηηηηηηηηηηηF,H1
(u) is an associated eigenfunction on

(Γ, c, ν) for the eigenvalue problem (6).

4. POISSON EIGENVALUES

In this section we give bounds for the first nonzero eigenvalue of the Laplace-
Beltrami operator of a weighted network in terms of equilibrium measures. Recall
that the Poisson eigenvalue problem can be formulated as finding λ ∈ R and
u ∈ C(V ) nonzero such that L(u) = λu on V . Therefore Poisson eigenvalues are
nothing else but the so-called network’s eigenvalues and for this reason λ(V, ∅, ∅) is
usually denoted as λ(Γ) and it contains valuable information about the connectivity
of Γ and is often called the algebraic connectivity of Γ, [4].

The following result displays a generalization of the most popular lower
and upper bounds for λ(Γ). When ν = 1, the upper bound becomes λ(Γ) ≤

n

n − 1
min
x∈V

{k(x)} and was obtained by M. Friedler in [4] whereas, when ν = k

and c(x, y) = 1 for x ∼ y, the lower bound gives λ(Γ) ≥
1

2Dm
and was obtained by

F. Chung in [3].

Lemma 4. If D is the diameter of Γ, then

1

Dvolν(V )
min
x∼y

{c(x, y)} ≤ λ(Γ) ≤ min
x∈V

{

k(x)

ν(x)

volν(V )

volν(V ) − ν(x)

}

.

Proof. The upper bound follows by considering the function u = εx −
ν(x)

volν(V )
in

the variational characterization of λ(Γ) for any x ∈ V . The lower bound follows
the guidelines of [3, Lemma 1.9]. �

The equilibrium measures that play an essential role in this section are the
equilibrium measures for sets of the form V \ {x} with x ∈ V . As for any x ∈ V

it is verified that L(γx) = 1 on V \ {x}, applying the Green’s Identity we obtain
that

volν(V ) =
∫

V

L(γx) ν dy + ν(x)
(

1 − L(γx)(x)
)

= ν(x)
(

1 − L(γx)(x)
)

and therefore

L(γx) = 1 −
volν(V )

ν(x)
εx.
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Theorem 4.2. If (Γ, c, ν) is a weighted network, then

min
x∈V

{

volν(V )

‖γx‖1,ν

}

< λ(Γ) ≤ min
x∈V

{

volν(V )‖γx‖1,ν

volν(V )‖γx‖2
2,ν − ‖γx‖2

1,ν

}

.

Proof. If we fix x ∈ V and we take v = ‖γx‖1,ν − volν(V ) γx, then
∫

V

vν dy = 0 and

v is a nonzero function since v(x) = ‖γx‖1,ν > 0. Moreover
∫

V

vL(v) ν dy = volν(V )2‖γx‖1,ν , ‖v‖2
2,ν = volν(V )2‖γx‖

2
2,ν − volν(V )‖γx‖

2
1,ν

and hence the upper bound follows from (7).

On the other hand, if u ∈ C(V ) is a nonzero eigenfunction, then applying
Green’s Identity we obtain that for each x ∈ V it is verified that

λ(Γ)
∫

V

u γx ν dy =
∫

V

L(u) γx ν dy =
∫

V

u

(

1 −
volν(V )

ν(x)
εx

)

ν dy = −volν(V )u(x).

Moreover, as λ(Γ) > 0, it is also true that

volν(V ) |u(x)| = λ(Γ)
∣

∣

∣

∫

V

u γx ν dy
∣

∣

∣
≤ λ(Γ)

∫

V

|u| γx ν dy, x ∈ V.

Hence, when we take x0 ∈ V such that |u(x0)| = max
x∈V

|u(x)|, the result follows

keeping in mind that
∫

V

|u| γx0 ν dy ≤ |u(x0)| ‖γx0‖1,ν . �

If the upper bound is attained, then there exists x ∈ V such that v = ‖γx‖1,ν−
volν(V ) γx is an eigenfunction and hence γx is constant. Moreover we have the
following result.

Lemma 4.3. Given x ∈ V, γx is constant iff v = ‖γx‖1,ν − volν(V ) γx is an eigen-

function. Moreover the value
k(x)

ν(x)

volν(V )

volν(V ) − ν(x)
is the corresponding eigenvalue.

Proof. Suppose that γx = aχ
V \{x}

. Then from Lemma 2.1 a c(x, y) = ν(y) for any
y 6= x. Moreover

1 −
volν(V )

ν(x)
= L(γx)(x) = −

k(x)a

ν(x)
.

Therefore a =
volν(V ) − ν(x)

k(x)
. Let v = ‖γx‖1,ν − volν(V ) γx = a

(

volν(V )εx − ν(x)
)

.

Then for any y 6= x

L(v)(y) = a volν(V )L(εx)(y) = −a volν(V )
c(x, y)

ν(y)
= volν(V )

1

aν(x)
v(y)

whereas

L(v)(x) = a volν(V )L(εx)(x) = a volν(V )
k(x)

ν(x)
= volν(V )

1

aν(x)
v(x).
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Conversely, if v = ‖γx‖1,ν − volν(V ) γx is an eigenfunction associated with λ 6= 0,
then

L(v) = −
volν(V )

ν(x)

(

ν(x) − volν(V )εx

)

= λ
(

‖γx‖1,ν − volν(V )γx

)

and hence γx is constant. �

In the case of distance-regular graphs, Theorem 4.2 provides bounds on λ(Γ)
in terms of the parameters associated with the graph.

Proposition 4.4. If Γ is a distance-regular graph, then

n
D−1
∑

j=0

(n − |Bj |)
2

kjbj

< λ(Γ) ≤

n
D−1
∑

j=0

(n − |Bj |)
2

kjbj

D−1
∑

j=0

|Bj | (n − |Bj |)
3

k2

j b2

j

+ 2
∑

0≤i<j≤D−1

|Bi| (n − |Bi|)(n − |Bj |)
2

kikjbibj

.

Proof. From (5) we get that ‖γx‖1
=

D−1
∑

j=0

(n − |Bj |)
2

kjbj

and

‖γx‖
2
2

=

D−1
∑

j=0

(n − |Bj |)
3

k2
j b2

j

+ 2
∑

0≤i<j≤D−1

(n − |Bi|)(n − |Bj |)
2

kikjbibj
.

Therefore the result follows by applying Theorem 4.2. �

The above bounds are better than the well-known bounds for general graphs

1

nD
≤ λ(Γ) ≤

n

n − 1
k

since for a distance-regular graph
(n − 1)2

k
≤ ‖γx‖1

≤ n2D.

4.1. Dirichlet eigenvalues

In this subsection we obtain bounds for the first Dirichlet eigenvalue of
a proper subset F ⊂ V in terms of the equilibrium measure of F . Recall that,
if F ⊂ V is a proper subset, from (6) the Dirichlet eigenvalue problem on F

consists on finding λ ∈ R and u ∈ C(F ) nonzero such that L(u) = λu on F . For
this reason λ

(

F, ∅, δ(F )
)

is usually denoted by λ
d
(F ).

Next we obtain bounds on λ
d
(F ) in terms of γF , the equilibrium measure of F .

In spite of the simplicity of their proofs, compare for instance with the technique
used by H. Urakawa in [9, Theorem 2.1], we see through some examples that
they are tight bounds, which shows again the good properties of the equilibrium
measures.
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Theorem 4.5. Let (Γ, c, ν) be a weighted network. Then for each proper subset

F ⊂ V the following inequalities hold :

min
x∈F

{

1

γF (x)

}

≤ λ
d
(F ) ≤

‖γF‖1,ν

‖γF‖2
2,ν

.

Moreover any of the above inequalities is an identity iff k+
F

is a multiple of ν.

Proof. The upper bound follows directly by taking u = γF in the variational
characterization of λ

d
(F ).

To obtain a lower bound for λ
d
(F ), consider now u a positive eigenfunction

corresponding to λd(F ). As u ∈ C(F ) verifies that L(u) = λ
d
(F )u on F , applying

Green’s Identity we obtain

λ
d
(F )

∫

F

u γF ν dx =
∫

F

γFL(u) ν dx =
∫

F

uLγF ν dx = ‖u‖1,ν

and hence
1

max
x∈F

{γF (x)}
≤ λ

d
(F ) ≤

1

min
x∈F

{γF (x)}
,

which in particular gives the claimed lower bound.

Finally the lower bound is attained iff γF is constant and the upper bound
is attained iff γF is an eigenfunction and hence iff γF is constant. Therefore, the
result follows from Lemma 2.1. �

Note that the upper bound in the above proposition is better than the ele-
mentary upper bound obtained in the end of its proof since

‖γF ‖1,ν

‖γF ‖2
2,ν

≤
‖γF‖1,ν

min
x∈F

{γF (x)} ‖γF‖1,ν
= max

x∈F

{

1

γF (x)

}

.

In fact both bounds coincide iff k+
F

is a multiple of ν. In particular this happens

for any F proper subset of a complete graph since λd(F ) = n − |F | =
1

γF
.

The following simple example shows the sharpness of the above bounds. Let
Pn+2 be a path on n + 2 vertices and F = {x1, . . . , xn}, where k(xi) = 2 for any

i = 1, . . . , n. Then γF (xi) =
i(n + 1) − i2

2
, i = 1, . . . , n, and therefore

‖γF ‖1 =
n(n + 1)(n + 2)

12
and ‖γF‖2

2 =
n(n + 1)(n + 2)((n + 1)2 + 1)

120
.

If we apply the above theorem, we get

2
⌈

(n + 1)2

4

⌉ ≤ λ
d
(F ) ≤

10

(n + 1)2 + 1
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whereas it is well-known that λ
d
(F ) = 2 − 2 cos

(

π

n + 1

)

.

From (4) and the above Theorem we get bounds on the first Dirichlet
eigenvalue of both the complementary of a vertex and a ball of a distance-regular
graph.

Proposition 4.6. Let Γ be a distance-regular graph, then for any x ∈ V,

1
D−1
∑

s=0

n − |Bs|

ksbs

< λ
d
(V \ {x}) <

D−1
∑

j=0

(n − |Bj |)
2

kjbj

D−1
∑

j=0

(n − |Bj |)
3

k2

j b2

j

+ 2
∑

0≤i<j≤D−1

(n − |Bi|)(n − |Bj |)
2

kikjbibj

.

Proposition 4.7. Let Γ be a distance-regular graph. Then for each 1 ≤ r ≤ D− 1

1
r

∑

s=0

|Bs|

ksbs

< λ
d
(Br) <

r
∑

s=0

|Bs|
2

ksbs

r
∑

i=0

ki

(

r
∑

s=i

|Bs|

ksbs

)2 .

4.2. Neumann eigenvalues

In this subsection we study the Neumann eigenvalue problem on a proper
subset F ⊂ V ; that is, to find λ ∈ R and u ∈ C(F̄ ) nonzero such that L(u) =

λu on F and
∂u

∂n
F

= 0 on δ(F ). For this reason λ
(

F, δ(F ), ∅
)

is usually denoted by

λ
N

(F ). Moreover throughout this section we suppose that |F | ≥ 2 since otherwise
the problem becomes trivial.

From Corollary 3.3 and tacking into account the bounds given in Theorem
4.2 we obtain lower and upper bounds for λ

N
(F ) in terms of equilibrium measures

of the associated weighted network (Γ̄F , b, ν).

Proposition 4.8. Let (Γ, c, ν) be a weighted network and F ⊂ V a proper subset.

Then

min
x∈F

{

volν(F )

‖γ̄x‖1,ν

}

≤ λ
N

(F ) ≤ min
x∈F

{

volν(F )‖γ̄x‖1,ν

volν(F )‖γ̄x‖2
2,ν − ‖γ̄x‖2

1,ν

}

,

where γ̄x is the equilibrium measure for F \{x} in the weighted network (Γ̄F , b, ν).

Next we analyze the following nontrivial example. Consider Tk, the infinite
k-homogeneous tree rooted at o, and F = Br(o). Then the new graph consist of

the finite k-homogeneous tree rooted at o and depth r so that |F | =
k(k − 1)r − 2

k − 2
.



104 E. Bendito, A. Carmona, A. M. Encinas, J. M. Gesto

In [2] it was proved that

γ̄F
y (x) =

|F |

2
d(x, y) +

(

|F |

2
+

1

k − 2

)

(|y| − |x|)

+
1

(k − 2)2

(

(k − 1)r+1−|y| − (k − 1)r+1−|x|
)

which implies that

‖γ̄F
y ‖1 = |F |

(

|F | +
2

k − 2

)

|y| +
2|F |

(k − 2)2
(k − 1)r+1−|y| −

|F |(k − 1)r+1

(k − 2)2

−
k

(k − 2)3

(

r(k − 1)r+1 − (r + 1)(k − 1)r + 1
)

−
(k − 1)r

(k − 2)2

(

k − 1 + rk
)

.

This function attains its maximum value at any vertex y such that |y| = r and
hence

min
y∈F

{

|F |

‖γ̄y‖1

}

=
(k − 2)2(k(k − 1)r − 2)

(k − 1)2r(kr(k − 2) − (k − 1)) + O(kr+2)
.

On the other hand, if we take, y = 0, then we obtain

|F | ‖γ̄F
o ‖1

|F | ‖γ̄F
o ‖2

2 − ‖γ̄F
o ‖2

1

=
k(k − 2)2(k − 1)3r−1

(

k(k − 2) + 1
)

+ O(k2r+4)

(k − 1)3r+1
(

k(k − 2) + 2
)

+ O(k2r+3)
.

Definitely we get

λ
N

(F ) ∈ O(k) and λ−1
N

(F ) ∈ O(rkr−1).

4.3. Dirichlet-Neumann Eigenvalues

In this subsection we obtain bounds for the first Dirichlet-Neumann eigen-
value on a proper subset F with δ(F ) = H1 ∪ H2, H1 ∩ H2 = ∅ and H1, H2 6= ∅.
Recall that the Dirichlet-Neumann problem can be formulated as finding λ ∈ R

and u ∈ C(F ∪ H1) nonzero such that L(u) = λu on F and
∂u

∂n
F

= 0 on H1.

From Corollary 3.3 and taking into account the bounds given in Theorem
4.5 we obtain lower and upper bounds for λ(F, H1, H2) in terms of equilibrium
measures of the associated weighted network (Γ̄F , b, ν).

Proposition 4.9. Let (Γ, c, ν) be a weighted network, F ⊂ V a proper subset and

suppose that δ(F ) = H1 ∪ H2, where H1 ∩ H2 = ∅ and H1, H2 6= ∅. Then

min
x∈F

{

1

γ̄F (x)

}

≤ λ(F, H1, H2)) ≤
‖γ̄F ‖1,ν

‖γ̄F ‖2
2,ν

where γ̄F is the equilibrium measure for F in the weighted network (Γ̄F , b, ν). More-

over any of the above inequalities is an identity iff
◦

F= ∅ and
∫

H2

c(x, y) dy is a

nonzero multiple of ν on F .
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We finish this subsection by analyzing some examples that show the tightness
of the bounds obtained.

(i) Let Kn be the complete graph on n vertices, F ⊂ V a proper set and
H1, H2 a nontrivial partition of δ(F ). Then

b(x, y) =







|F | + |H1|

|F |
, if x, y ∈ F and x 6= y,

1, otherwise

and therefore γ̄F =
1

|H2|
χ

F
which implies that λ(F, H1, H2) = |H2|.

(ii) Let Pn+2 be a path the vertices of which are labeled as x0, x1, . . . , xn+1.
Consider the set F = {x1, . . . , xn} and the Dirichlet-Neumann problem on F

with boundary conditions u(x0) = 0 and u(xn+1) = u(xn). Then the new network
P̄n+2 is a path on n+1 vertices with Dirichlet condition u(x0) = 0 and therefore

γ̄F (xi) =
i(2n + 1) − i2

2
, i = 0, . . . , n. Moreover

‖γ̄F‖1 =
1

6
n(n + 1)(2n + 1) and ‖γ̄F ‖2

2 =
1

30
n(n + 1)(2n + 1)(2n2 + 2n + 1)

which implies
2

n(n + 1)
≤ λ(F, H1, H2) ≤

5

2n2 + 2n + 1
.

On the other hand in this case λ(F, H1, H2) = 2 − 2 cos
(

π

2n + 1

)

.
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