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In memory of Lucia Gionfriddo

We initiate the study of extended bicolorings of Steiner triple systems (STS)
which start with a k-bicoloring of an STS(v) and end up with a k-bicoloring of
an STS(2v + 1) obtained by a doubling construction, using only the original
colors used in coloring the subsystem STS(v). By producing many such
extended bicolorings, we obtain several infinite classes of orders for which
there exist STSs with different lower and upper chromatic number.

1. INTRODUCTION

A Steiner triple system (STS) is a pair (V,B) where V is a v-set and B is a
collection of 3-subsets of V called triples such that every 2-subset of V is contained
in exactly one triple, see [4]. A coloring of an STS (V,B) is a mapping φ : V → C;
the elements of C are called colors. If |C| = k, we have a k-coloring. For each c ∈ C,
the set φ−1(c) = {x : φ(x) = c} is a color class. A coloring φ of (V,B) is a bicoloring

if |φ(B)| = 2 for all B ∈ B. Here φ(B) =
⋃

x∈B φ(x). Thus in a bicoloring of (V,B),
every triple has two elements in one color class and one in another class, so there
are no monochromatic triples nor polychromatic triples (i.e. triples receiving three
colors). A strict k-bicoloring is one in which exactly k colors are used. From now
on we assume that all our bicolorings are strict, unless the contrary is explicitly
stated.
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Considerations of bicolorings of Steiner triple systems arose from the theory
of mixed hypergraphs pioneered by Voloshin [22, 23]. In a mixed hypergraph
setting, there are two kinds of edges: C-edges which must contain two vertices col-
ored with the same color, and D-edges which must contain two vertices of different
colors. Requiring all edges of a Steiner system to be both, C-triples and D-triples
leads to the concept of bicolorings. In the literature, often the terms BSTS, BSQS,
or bi-STS coloring are used instead of bicoloring (cf. [6, 14, 15, 16, 17, 18, 19]).
We can also find results related to particular color patterns for different designs in
[1, 5, 7, 9, 10, 11, 12, 13, 20].

The minimum (maximum) possible number k in a strict k-bicoloring of an
STS is called the lower (upper) chromatic number of the STS. However, not every
STS has a bicoloring. The smallest such example occurs for STSs of order 15: of
the 80 nonisomorphic systems, 57 are uncolorable. In fact, every STS(v) whose

independence number is at most
v

3
is uncolorable. It is likely that almost all STSs

have this property although to best of our knowledge this remains unproved (cf.
[4]).

Given a k-bicoloring C, if the cardinalities of the color classes are n1, n2, . . . ,
nk, we will write for brevity C = C(n1, n2, . . . , nk), and assume, unless stated to
the contrary, that n1 ≤ n2 ≤ · · · ≤ nk.

In this paper, we want to initiate a study of extended bicolorings, i.e. bicol-
orings of an STS(w) which start with a bicoloring of a sub-STS(v). Essential for us
in this endeavor will be a well-known recursive construction known as a doubling

construction (other names: v → 2v + 1 rule, doubling plus one construction etc.)
which starts with an STS(v) and ends with an STS(2v + 1).

To obtain such a construction, all that is needed, apart from the subsystem,
is a 1-factorization of the complete graph Kv+1. Indeed, let (X,F) where F =
{F1, . . . , Fv} is a 1-factorization of Kv+1 (where |X | = v + 1 must be even). If
(V,B), V = {a1, . . . , av}, is an STS(v), form the set of triples C = {{ai, x, y} : ai ∈
V, {x, y} ∈ Fi}. Then (V ∪X,B ∪ C) is an STS(2v + 1) (cf. [4]).

An easy observation is that if a given STS(v), (V,B), admits a k-bicoloring
C = C(n1, . . . , nk), then any STS(2v + 1) obtained from (V,B) by a doubling
construction admits a (k+1)-bicoloring C(n1, . . . , nk, nk+1) where the v+1 vertices
of X are colored with a new color, and so nk+1 = v + 1. Another such (k + 1)-
bicoloring that can be always obtained is C′ = C′(n′

1, . . . , n
′
k, n

′
k+1

) where n′
i = 2ni

for i = 1, . . . , k, and n′
k+1

= 1 (see [3]).

The question that we want to address is the following. Given an STS(v) with
a bicoloring C = C(n1, . . . , nk), when does there exist an STS(2v +1) obtained by
a doubling construction which admits a bicoloring C′ = C′(n′

1, . . . , n
′
k)? In other

words, when can we color the elements of X with the original k colors of the k-
bicoloring C without introducing an extra color as above? If such a coloring exists,
we call it an extended bicoloring of C. Thus extended bicolorings may exist only for
orders 2v + 1 ≡ 3 or 7 (mod 12) as v ≡ 1 or 3 (mod 6).

The importance of extended bicolorings lies in the fact that they enable one



Extending bicolorings for Steiner triple systems 227

to construct STSs with different lower and upper chromatic numbers; there are
only scarce results in the literature on the latter (cf., e.g., [14]). The extendibility
of partial colorings is a relevant issue in graph theory (see [2, 21]), both for its the-
oretical interest and practical applications. Here we initiate the study of extending
bicolorings in Steiner triple systems, with the aim to derive consequences in the
coloring theory of mixed hypergraphs. In this way the present work relates several
intensively studied areas.

2. EXTENDED BICOLORINGS

Let S = (V,B) be an STS(v) which is k-bicolorable with C = C(n1, . . . , nk)
and let S′ = (X, C) be an STS(2v+1) obtained from S by a doubling construction.
We are trying to investigate the conditions under which there exists an extended

bicoloring of S′, say C′ = C′(n′
1, . . . , n

′
k) where the elements of the subsystem (V,B)

are colored as in C, and the elements of Y = X \V are colored with the same colors
as those used in C. If ci = n′

i − ni, 1 ≤ i ≤ k are the numbers of vertices in Y

colored with the color i ∈ C then clearly,
k

∑

i=1

ci = v+1 (it may happen that cj = 0

for some j ∈ {1, . . . , k}). Beside this obvious condition, the following is a necessary
condition for the existence of an extended k-bicoloring of S′.

Theorem 1. Let S = (V,B) be an STS(v) which is k-bicolorable with C =
C(n1, . . . , nk) and let S′ = (X, C) be an STS(2v+1) obtained from S by a doubling

construction. With the notation as above,

(1)

k
∑

i=1

c2i + 2

k
∑

i=1

nici = (v + 1)2.

Proof. The number of pairs of elements of Y equals
(

v + 1
2

)

. Clearly, the number

of monochromatic pairs among these is
k

∑

i=1

(

ci
2

)

. On the other hand, the number of

two-colored pairs among these is
k

∑

i=1

nici; indeed, if ai ∈ V is colored with color j,

then any pair {x, y} in the 1-factor Fi is either monochromatic or else one of x, y
is colored with color j. Consequently, the number of two-colored pairs in Fi is nj .
Thus we have

k
∑

i=1

(

ci
2

)

+

k
∑

i=1

nici =
(

v + 1
2

)

whence (1) follows easily. �

Solutions of (1) will be called solutions with respect to C. We stress that
condition (1) given by Theorem 1 is only necessary for the existence of an extended
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bicoloring. It certainly is not sufficient: in [6] condition (1) was determined for
v = 2h − 1 and all of its solutions were determined for h ≤ 10, nevertheless these
solutions do not lead to any extended bicolorings.

Corollary 2. Let S′ be a k-bicolorable STS(2v + 1) obtained by a doubling con-

struction from a k-bicolorable STS(v) with the coloring C = C(n1, . . . , nk), and let

(c1, . . . , ck) be a solution to (1) with respect to C.
1. If there is a cj = 0, then all ci’s are even.

2. If there is j such that cj >
v + 1

2
, then there exists no extended bicoloring of C.

Proof. 1. If there is a j such that cj = 0, then in any factor corresponding to an
element al ∈ V colored with the color j, all pairs must be monochromatic which
implies that every ci has to be even.

2. If cj >
v + 1

2
for some j, then in all factors associated with elements of V

colored with color j, there must exist monochromatic pairs of color j, and thus
monochromatic triples, which is a contradiction. �

We illustrate the use of Corollary 2 on the example of a (potential) extended
bicoloring of an STS(19). First notice that no extended bicolorings of STS(v) exist
for v = 7 or v = 15, as shown in [6]. The unique STS(9) admits a bicoloring
C = C(1, 4, 4), and no other bicolorings (see [3] or [17]). The following are all
solutions with respect to C: (a) (3, 2, 5), (b) (3, 5, 2), (c) (5, 0, 5), (d) (5, 5, 0), (e)
(8, 0, 2), and (f) (8, 2, 0). Corollary 2.1 eliminates solutions (c), (d), (e) and (f)
from contention. Concerning (a), since c1 = 3 and c3 = 5, it must be that in the
four 1-factors associated with elements colored with color 2, there are exactly two 2-
colored pairs colored with colors 1 and 2 and with 2 and 3, one monochromatic pair
of color 1, and two monochromatic pairs of color 3. Since c1 = 3, this is easily seen
to be impossible, so solution (a) cannot lead to an extended bicoloring. The same
reasoning applies to the solution (b). Thus there exist no extended bicolorings of
any STS(19) (obtained from an STS(9) by a doubling construction, of course). Thus
the smallest w for which an STS(w) may admit an extended bicoloring is w = 27
(where the STS(27) is obtained from an STS(13) by a doubling construction).

We remark that due to the above, any uniquely 3-colorable STS(19), or any
3- and 4-colorable STS(19) cannot contain a sub-STS(9). It was shown in [14]
that there exist uniquely 3-bicolorable, uniquely 4-bicolorable, and also 3- and 4-
bicolorable STS(19).

Theorem 3. Let S be a k-bicolorable STS(v) with the k-bicoloring C = C(n1, . . . ,

nk). and suppose there exist i, j, i 6= j, such that ni+nj =
v + 1

2
≡ 0 (mod 2). Then

there exists an STS(2v + 1), S′, obtained by a doubling construction from S such

that S′ has an extended k-bicoloring C′.

Proof. Since v+1 ≡ 0 (mod 4), we may use as the 1-factorizationF = {F1, . . . , Fv}
in the doubling construction the following 1-factorization. Write Y = Y1∪Y2 where

|Yi| = v + 1

2
; take F1, . . . , Fv+1

2

to be the 1-factors of any 1-factorization of the com-
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plete bipartite graph K v+1

2
,
v+1

2

with bipartition (Y1, Y2); for the remaining
v − 1

2

1-factors Fv+3

2

, . . . , Fv, take Fi = Gi ∪ Hi, i =
v + 3

2
, . . . , v, where Gi, Hi are the

1-factors of any 1-factorization of K v+1

2

on Y1, and Y2, respectively. Color now the

v + 1

2
vertices of Y1 with color i and the v+1

2
vertices of Y2 with color j. Associate

the 1-factors F1, . . . , Fv+1

2

with the vertices of V colored in the coloring C with

either color i or color j, and associate the remaining 1-factors with the elements of
V colored in C with colors other than i or j. We obtain in this way an extended
k-bicoloring of the resulting STS(2v+1). Indeed, if aq is an element of V which is
colored with i or j, then any triple T containing aq is two-colored: one of the two
elements of T other than aq is colored with color i, and the other with color j. On
the other hand, if ar is an element of V colored in C with a color other than i or
j, then any triple T containing ar is also two-colored since the two elements of T
other than ar are both colored with i or both colored with j. �

A more general version of Theorem 3 is the following.

Theorem 4. Let S be a k-bicolorable STS(v) with the k-bicoloring C = C(n1, . . . ,
nk). Suppose that there exist p integers nki

, 1 ≤ i ≤ p < k such that nk1
+ nk2

=
v + 1

2p−1
is an even integer, and further nki

=
v + 1

2p−i+1
for 3 ≤ i ≤ p are all even. Then

there exists an STS(2v+ 1) obtained by a doubling construction from S which has

an extended k-bicoloring.

The proof of this theorem is more technical than that of Theorem 3, especially
in the description of the 1-factorization F involved in the doubling construction.
Since in what follows we do not make use of this more general version, with one
exception, this proof is omitted (see Appendix [8]).

3. SMALL EXTENDED BICOLORINGS

As shown earlier, there exist no extended bicolorings of STS(w) for w ≤ 19.
Since w ≡ 3 or 7 (mod 12), the smallest w for which there might exist an extended
bicoloring is w = 27. Such an extended bicoloring does indeed exist.

Theorem 5. There exists an STS(27), (W, C) obtained by a doubling construction

from an STS(13), (V,B), which has an extended 3-bicoloring C = C(2, 5, 6). For
this system, χ = 3 and χ̄ = 4.

Proof. All solutions (c1, c2, c3) with respect to the coloring C (cf. Theorem 1)
are as follows: (a) (4, 4, 6), (b) (7, 1, 6), (c) (4, 7, 3), (d) (7, 7, 0), (e) (10, 1, 3), (f)
(10, 4, 0). By Corollary 2, solutions (d), (e), and (f) cannot lead to an extended
bicoloring of C. Concerning solution (c), there are three monochromatic pairs of
elements of color 3. Two of these pairs may occur in the two 1-factors correspond-
ing to the vertices of V of color 1 but the third pair cannot occur in a 1-factor
corresponding to a vertex of V of color 2 (as there are 7 vertices of W \ V of color
2, and that would force a monochromatic triple of color 2), nor clearly in a 1-factor
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corresponding to a vertex of color 3. Thus solution (c) does not lead to an extended
bicoloring of C either.

On the other hand, each of the first two solutions, namely (4, 4, 6) and
(7, 1, 6), lead to an extended bicoloring C′ = C′(6, 9, 12). The 1-factorizations F
used in the respective doubling constructions are given in the Appendix [8]. Our
STS(27), (W, C), besides having an extended 3-bicoloring with respect to C, is also
4-bicolorable with the coloringC′′ = C′′(2, 5, 6, 14).At the same time, a 5-bicoloring
of (W, C) is impossible due to [20], since 27 < 25 − 1. Thus χ = 3, χ̄ = 4, which
completes the proof. �

Concerning order 31, an inspection of the tables in [3] shows that there exists
no extended bicoloring for this order: there exists no 3-bicoloring of an STS(15),
and no 4-bicoloring of STS(31) whatsoever. However, the next admissible order 39
shows a quite different behaviour.

Theorem 6. There exist STS(39) admitting extended bicolorings obtained from

extended bicolorings of STS(19) of type C1 = C(4, 6, 9) and C2 = C(1, 2, 8, 8).
More specifically, there exist STS(39) with (χ, χ̄) equal to either (3, 4), or (4, 5), or
(3, 5).

Proof. It was shown in [14] that there exist STS(19) (a) admitting only the
3-bicoloring C(4, 6, 9), (b) admitting only the 4-bicoloring C(1, 2, 8, 8), and (c) ad-
mitting both, the 3-bicoloring C(4, 6, 9) and the 4-bicoloring C(1, 2, 8, 8). By The-
orem 3, both C1 and C2 are extendable bicolorings (since we have 4 + 6 = 10 and
2 + 8 = 10, respectively). Starting with an STS(19) of type (a), (b), or (c), we
obtain an STS(39) of the respective kind as claimed. �

In what follows we discuss in somewhat less detailed manner the existence of
extended bicolorings for those STS(v) of orders 43 ≤ v ≤ 99 which can be obtained
by a doubling construction.

Theorem 7. For an STS(v), v ∈ {51, 63, 67, 75}, there exists no extended bicolor-

ing.

Proof. (i) For an STS(25), the only types of bicoloring that are possible are
C1 = C(5, 10, 10) and C2 = C(1, 4, 8, 12). While there exist 12 solutions with
respect to C1, none satisfies the condition of Corollary 2 and thus cannot lead to
an extended bicoloring. There exist no solutions with respect to C2, and so no
STS(51) can have an extended bicoloring.
(ii) By [6], no STS(63) obtained by doubling from an STS(31) can have an extended
bicoloring.
(iii) None of the bicolorings of any STS(33) or STS(37) (cf. [3]) yields a solution
with respect to such a coloring, thus there is no extended bicoloring of any STS(67)
or STS(75). �

Theorem 8. For an STS(v), v ∈ {43, 55, 79, 87, 91, 99}, there exist extended bi-

colorings. More specifically, there exists an extended 3-bicoloring of an STS(43),
extended 4-bicolorings of an STS(v) for v ∈ {55, 87, 91}, and extended 4- and 5-
bicolorings of an STS(v) for v ∈ {79, 99}.
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Proof. (i) A bicolorable STS(21) can only be 3-bicolorable, with colorings C1 =
C(5, 6, 10) or C2 = C(4, 8, 9) (see [3] or [14]). Both are extendable to a 3-bicoloring
C = C(10, 16, 17) of an STS(43) for which we have χ = 3 and χ̄ = 4 (there exists
no 5-bicolorable STS(43), cf. [3]). The 1-factorization F in the corresponding
doubling construction is given in the Appendix [8].

(ii) By Theorem 3, the 4-bicoloring C(1,4,10, 12) of an STS(27) is extendable
to a 4-bicoloring C(1, 12, 18, 24) of an STS(55), also the 4-bicoloring C(1,8,12, 18),
and the 4-bicoloring C(2, 6, 13,18), respectively, of an STS(39) is extendible to a
4-bicoloring C(1, 18, 28, 32), and to a 4-bicoloring C(6, 13, 22, 38) of an STS(79),
respectively; finally, the 4-bicolorings C(1,10,12, 20), and C(4, 4, 17,18), respec-
tively, of an STS(43) is extendable to a 4-bicoloring C(1, 20, 32, 34), and to a 4-
bicoloring C(4, 17, 26, 40), respectively. (The two essential colors are indicated in
bold.)

(iii) Extendability of the 5-bicolorings C(1, 2, 8, 8, 20) and C(1, 4, 4, 10, 20) of
an STS(43) follows from the more general Theorem 4.

(iv) There are only two possible types of a 4-bicoloring of an STS(45), namely
C1 = C(2, 8, 14, 21) and C2 = C(4, 6, 13, 22). There are 12 solutions with respect to
C1 but none of them leads to an extended bicoloring. Similarly, there are 12 solu-
tions with respect to C2 but only one of them, namely (c1, c2, c3, c4) = (4, 8, 12, 22)
leads to an extended 4-bicoloring. The corresponding 1-factorization F in the dou-
bling construction that leads to this extended bicoloring is given in the Appendix
[8].

(v) Although there exist 3-, 4-, and 5-bicolorable STS(49), none of the 3-
bicolorings is extendable. On the other hand, 4-bicolorings C(2, 8, 18, 21) and
C(5, 6, 14, 24) as well as the 5-bicoloring C(1, 4, 4, 20, 20) are all extendable. This is
shown by examining all solutions with respect to the particular bicoloring C. Due
to the considerable number of these solutions (84, 29 and 27, respectively), we omit
the details. The 1-factorizations occurring in the doubling constructions leading to
the respective extended bicolorings are given in the Appendix [8]. �

Theorem 9. There exist extended 4-bicolorings for each w ∈ {127, 151, 159, 175};
there exist extended 5-bicolorings for each w ∈ {103, 111, 127, 135, 151, 159, 175}.
Proof. Below we list 4- and 5-bicolorings (known to exist by [3]) to which it is
possible to apply Theorem 3; the two essential colors are in bold.

order 2v + 1 extendable colorings of an STS(v)

103 (1,2, 8, 16, 24)

111 (1, 2, 8,20, 24)

127 (2,14,18, 29), (4, 9, 22, 28), (2, 5, 6, 20, 30)

135 (1,2, 16, 16,32)

151 (4,12,26, 33), (1, 4, 10,28, 32)

159 (4, 14, 25, 36), (6, 10, 29, 34), (1,4, 12, 26, 36), (1, 2, 16,24, 36)

175 (4, 17, 26, 40), (2, 5, 10,34, 36). �

We summarize our results as follows.
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Theorem 10. Let Ω = {27, 39, 43, 55, 79, 87, 91, 99, 103, 111, 127, 135, 151, 159, 175}.
For each v ∈ Ω, there exists an STS(v) with an extended bicoloring, and thus for

all v ∈ Ω, we have χ 6= χ̄.

Proof. For each v ∈ Ω we have an extended k-coloring for some k, and also (at
least) a (k + 1)-bicoloring (with nk+1 = v + 1). �

Corollary 11. For each v ∈ Ω′ = {27, 39, 43, 91, 99, 103, 127, 135, 151}, there exists

an infinite class of STS(w), where w = 2t(v + 1)− 1, t ≥ 1, such that χ 6= χ̄.

Proof. Apply repeatedly the doubling construction to the appropriate STS(v). �

4. CONCLUSION

In this paper, we have investigated extended bicolorings with the explicit aim
to prove the existence of STSs with χ 6= χ̄, that is, with different lower and upper
chromatic number. We established the existence of extended bicolorings and of
such STSs for several infinite classes of orders 2v+1 ≡ 3 or 7 (mod 12), by utilizing
the doubling construction. The problem of determining for which orders v ≡ 1 or
3 (mod 6) does there exist an STS(v) with different lower and upper chromatic
number is certainly worthwhile. Another interesting question is, how large can the
difference χ̄ − χ be? It is also a legitimate question to ask whether an analogue
of extended bicolorings may exist for other recursive constructions, such as the
known v → 2v+ t rules where t > 1 (cf. [4]). For example, is it possible to use the
v → 2v + 5 rule starting with an STS(7) and ending up with an STS(19) to show
that the 3-bicoloring (1, 2, 4) for STS(7) can be extended to a 3-bicoloring (4, 6, 9)
for an STS(19)? The next example answers this question.

Example 12. The following STS(19) with a sub-STS(7) has a 3-bicoloring and these
triples: {0, 1, 9}, {2, 3, 9}, {0, 2, 10}, {1, 3, 10}, {0, 3, 15}, {1, 2, 15}, {9, 10, 15}, {0, 4, 11},
{0, 5, 12}, {0, 6, 13}, {0, 7, 14}, {0, 8, 16}, {1, 4, 12}, {1, 5, 11}, {1, 6, 14}, {1, 7, 13}, {1, 8, 17},
{2, 4, 13}, {2, 5, 14}, {2, 6, 11}, {2, 7, 12}, {2, 8, 18}, {3, 4, 14}, {3, 5, 16}, {3, 6, 17}, {3, 7, 18},
{3, 8, 11}, {4, 5, 9}, {4, 6, 18}, {4, 7, 16}, {4, 8, 10}, {5, 6, 10}, {5, 7, 17}, {5, 8, 13}, {6, 7, 9},
{6, 8, 12}, {7, 8, 15}, {9, 11, 16}, {9, 12, 17}, {9, 13, 18}, {8, 9, 14}, {7, 10, 11}, {10, 12, 16},
{10, 13, 17}, {10, 14, 18}, {11, 12, 18}, {11, 13, 15}, {11, 14, 17}, {3, 12, 13}, {12, 14, 15},
{13, 14, 16}, {6, 15, 16}, {4, 15, 17}, {5, 15, 18}, {2, 16, 17}, {1, 16, 18}, {0, 17, 18}.
The first seven triples are those of an STS(7) on {0, 1, 2, 3, 9, 10, 15}; the three color classes
are {0, 1, 2, 3, 4, 5, 6, 7, 8}, {9, 10, 11, 12, 13, 14} and {15, 16, 17, 18}.

Even if the answer in this case proved to be affirmative, and may proved so
in similar cases, it is not immediately clear that this will have as a consequence
the existence of STSs with χ 6= χ̄. Thus the doubling construction appears to offer
most benefits from the stated applications point of view. Nevertheless, it seems to
us worthwhile to study “extended” bicolorings for recursive rules for STSs other
than doubling.

Acknowledgements. Thanks to Alex Rosa for valuable comments, and to Mar-
iusz Meszka for providing us with Example 12. The authors also thank the reviewers
and editors for their assistance.
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