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ON SOLUTIONS OF Q-DIFFERENCE RICCATI

EQUATIONS WITH RATIONAL COEFFICIENTS

Yeyang Jiang, Zongxuan Chen

We consider q-difference Riccati equations in complex plane. We prove that
their transcendental meromorphic solutions are hypertranscendental, we in-
vestigate the value distribution of their meromorphic solutions and we con-
sider the existence and forms of rational solutions of q-difference Riccati
equations.

1. INTRODUCTION

We assume that the reader is familiar with the basic notions of Nevanlinna’s
value distribution theory [20]. Let f(z) be a meromorphic function in the complex
plane, q ∈ C\{0, 1}. The first order q-difference operator [1, p.488] is defined by

∆qf(z) =
f(qz)− f(z)

(q − 1)z
.

In 2002, Gundersen et al [7] showed that the order of growth of the solution
of the Schröder equation

(1.1) f(qz) = R(z, f(z))

is equal to log|q|(degf R) (|q| > 1). They also obtained that if the q-difference
equation (1.1) has a meromorphic solution of order zero, then the equation (1.1)
reduces to a q-difference equation with degf R = 1 where

degf R = max{p, q} for R(z, f(z)) =

p
∑

j=0

aj(z)f(z)
j

q
∑

j=0

bj(z)f(z)j
.
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This result is a q-difference analogue of the classical Malmquist’s theorem [11,
P.193]. The Schröder equation is closely connected to complex dynamics, see [3].

Several authors [4, 5, 8, 19] have recently investigated a difference Riccati
equation

f(z + c) =
a(z) + b(z)f(z)

c(z) + d(z)f(z)
,

where c ∈ C\{0}, and a(z), b(z), c(z), d(z) are meromorphic, such that a(z)d(z) −
b(z)c(z) 6≡ 0.

Similarly, we call equation (1.1) with degf R = 1,

(1.2) f(qz) =
A(z) + f(z)

1− (q − 1)zf(z)

the q-difference Riccati equation, where (q − 1)zA(z) + 1 6≡ 0.

In Section 2, we prove that the transcendental meromorphic solutions of (1.2)
are hypertranscendental, and investigate the value distribution of its meromorphic
solutions. In Section 3, we investigate the value distribution of meromorphic so-
lutions of more generalized q-difference Riccati equations, and we consider the
existence and forms of rational solutions of equations (1.2).

2. HYPERTRANSCENDENCY AND VALUE DISTRIBUTION OF
TRANSCENDENTAL SOLUTIONS OF (1.2)

A function ϕ(z) is called differentially algebraic [16], if there exists a diffe-
rential polynomial P (z, ϕ, ϕ′, · · · , ϕ(n)) such that

P (z, ϕ, ϕ′, · · · , ϕ(n)) = 0,

where the coefficients of P are rational functions. An analytic function which
is not differentially algebraic is called hypertranscendental (or transcendentally
transcendental). Wittich [18] investigated hypertranscendency of entire solutions
of the functional equation

(2.1) y(qz) = a(z)y(z) + b(z),

where a(z) and b(z) are polynomials, q is a nonzero constant satisfying |q| 6= 1.
Ishizaki [9] generalized Wittich’s results, and obtained the following theorem.

Theorem 2.1 [9]. Suppose that a(z) and b(z) are rational functions in (2.1). Then
all transcendental meromorphic solutions of the equation (2.1) are hypertranscen-

dental.

Ritt [14] proved that meromorphic solutions of the Schröder equation f(qz) =
R(f(z)), where R(z) is a rational function in z, are hypertranscendental, except
for certain cases where they are given in terms of exponential, trigonometric, or
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elliptic functions. As Rubel posed in [15, 17], there is an open problem on hyper-
transcendency for the equation f(λz) = R(z, f(z)), where λ is a complex constant
and R(z, f(z)) is a rational function in z and f. In this section, we prove that all
transcendental meromorphic solutions of the q-difference equation (1.2) are hyper-
transcendental.

Remark 2.2. In the second part of [7], Gundersen et al considered the q-difference
equation

(2.2) f(qz) =
a(z) + b(z)f(z)

c(z) + d(z)f(z)
,

where a(z), b(z), c(z), d(z) are meromorphic, a(z)d(z) − b(z)c(z) 6≡ 0, and q 6= 0, |q| 6= 1.
Suppose that (2.2) has a meromorphic solution f(z). Then T (r, f) is the same order

quantity as Ψ(r) log r, i.e. lim
r→∞

T (r, f)

Ψ(r) log r
is a nonzero finite number. In other words

T (r, f) = O(Ψ(r) log r),

where Ψ(r) = max{T (r, a), T (r, b), T (r, c), T (r, d)}.
Therefore, if A(z) is a rational function, then the transcendental solution f(z) of

(1.2) satisfies T (r, f) = O((log r)2).

Lemma 2.3 [2]. Let f(z) be a non-constant zero-order meromorphic solution of

P (z, f) = 0,

where P (z, f) is a q-difference polynomial in f(z). If P (z, α) 6≡ 0 for a meromorphic

function α(z) satisfying lim
r→∞

T (r, α)

T (r, f)
= 0, then

m

(

r,
1

f − α

)

= S(r, f)

on a set of logarithmic density 1.

Lemma 2.3 is a q-difference variant of the Mohon’ko lemma for differential
equation [13].

Theorem 2.4. Let q ∈ C\{0} such that |q| 6= 1. Suppose that A(z) is a rational

function.

(1) Suppose that (1.2) has a rational solution a(z). Then all transcendental

meromorphic solutions of the equation (1.2) are hypertranscendental.

(2) Suppose that A(z) is a nonconstant rational function which is not a poly-

nomial of degree one or three. If f(z) is a transcendental meromorphic solution of

(1.2), then f(z) has no deficient value and has infinitely many fixed points.

Proof. (1) Assume that (1.2) has a transcendental meromorphic solution f(z). We
define k(z) from

(2.3) f(z) = a(z) +
1

α(z)k(z)
, with α(z) =

(q − 1)q−1za(q−1z)− 1

(q − 1)q−1zA(q−1z) + 1
.
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We note that T (r, k) = T (r, f)+O(log r). From (1.2), we have a q-difference equa-
tion for k(z)

(2.4) k(qz) = B(z)k(z) + (q − 1)z, with B(z) =
(

(q − 1)za(z)− 1
)

α(z).

By the assumption that a(z) and A(z) are rational functions, B(z) is a rational
function. So applying Theorem 2.1, we know that k(z) is hypertranscendental. By
(2.3), we know that f(z) is hypertranscendental.

(2) Suppose that f(z) is a transcendental solution of (1.2). By Remark 2.2,

the order of growth of f(z) is zero. Set y(z) =
1

f(z)
. Then T (r, y) = T (r, f)+O(1).

Substituting f(z) =
1

y(z)
into (1.2), we obtain

P1(z, y) := A(z)y(qz)y(z) + y(qz)− y(z) + (q − 1)z = 0.

Since P1(z, 0) = (q − 1)z 6≡ 0, by Lemma 2.3, we see that

m

(

r,
1

y

)

= S(r, y),

on a set E of logarithmic density 1. Thus

N

(

r,
1

y

)

= T (r, y) + S(r, y)

on the set E. By the above equation and y(z) =
1

f(z)
, we obtain

N(r, f) = N

(

r,
1

y

)

= T (r, y) + S(r, y) = T (r, f) + S(r, f)

on E. So

δ(∞, f) = 1− lim
r→∞

N(r, f)

T (r, f)
≤ 1− lim

r→∞r∈E

N(r, f)

T (r, f)
= 1− 1 = 0.

Thus, δ(∞, f) = 0, that is ∞ is not a deficient value of f(z).
Now we prove that no finite values d are deficient values of f(z). By (1.2),

we have
P2(z, f) := (q − 1)zf(qz)f(z)− f(qz) + f(z) +A(z) = 0.

Since A(z) is not a polynomial of degree one, P2(z, d) = A(z) + (q − 1)d2z 6≡ 0.
Using a similar method as above, we obtain the result.

Set y(z) = f(z) − z. Then y(z) is a zero order transcendental meromorphic
function, and

T (r, y) = T (r, f) + O(log r).

Substituting f(z) = y(z) + z into (1.2), we obtain

P3(z, y) := (q − 1)z
(

y(qz) + qz
)(

y(z) + z
)

− y(qz) + y(z) +A(z)− (q − 1)z = 0.
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Since A(z) is not a polynomial of degree three, P3(z, 0) = (q−1)(qz2−1)z+A(z) 6≡
0. By Lemma 2.3, we see that

N

(

r,
1

f − z

)

= N

(

r,
1

y

)

= T (r, y) + S(r, y) = T (r, f) + S(r, f)

on a set of logarithmic density 1. So, f(z) has infinitely many fixed points.

Remark 2.5. By (2.3) and (2.4), we can find a transcendental meromorphic solution of

(1.2) through its rational solution, and we investigate the existence of rational solutions

of (1.2) in section 4.

3. THE ZEROS OF DIFFERENCES OF SOLUTIONS OF
Q-DIFFERENCE RICCATI EQUATIONS

Recently, Fletcher et al. [6] investigated the zeros of f(qz)−f(z) and
f(qz)− f(z)

f(z)
,

and obtained the following theorem.

Theorem 3.1 [6]. Let q ∈ C with |q| > 1. Let f be a transcendental meromorphic

function in the plane with

(3.1) L(f) = lim inf
r→∞

T (r, f)

(log r)2
= 0.

Then at least one of f(qz)− f(z) and
f(qz)− f(z)

f(z)
has infinitely many zeros.

For the q-difference Riccati equations

(3.2) f(qz) =
a(z)f(z) + b(z)

f(z) + c(z)
,

where a(z), b(z), c(z) are rational functions, by Remark 2.2, we know that a tran-
scendental meromorphic solution f(z) of (3.2) satisfies T (r, f) = O

(

(log r)2
)

, and

may not satisfy (3.1), but we prove that both f(qz)− f(z) and
f(qz)− f(z)

f(z)
have

infinitely many zeros.

Theorem 3.2. Suppose that a(z), b(z), c(z) are rational functions and q ∈ C with

|q| 6= 0, 1. If f(z) is a transcendental meromorphic solution of (3.2), then :

(i) If b(z) is nonconstant rational function, then f(z) has infinitely many

zeros and poles. Furthermore, if ∀d ∈ C, it holds that d2+d
(

c(z)−a(z)
)

−b(z) 6≡ 0,
then f(z) has no deficient value.

(ii) If a(z) ≡ c(z) is a nonzero rational function, and b(z) ≡ (s(z))2, where

s(z) 6≡ ±a(z) is a nonconstant rational function, then f(qz)−f(z) and
f(qz)− f(z)

f(z)
have infinitely many zeros.

Proof. (i) Suppose that f(z) is a transcendental solution of (3.2), by Remark 2.2,
the order of growth of f(z) is zero. We obtain that

f(qz)f(z) = −c(z)f(qz) + a(z)f(z) + b(z).



q-difference Riccati Equations 319

By the q-difference Clunie Lemma [2, Theorem 2.1] and the above equation, we see
that

m(r, f) = o
(

T (r, f)
)

on E. Hence we have that N(r, f) = T (r, f)+S(r, f) on E. On the other hand, we
set

(3.3) P (z, f) = f(qz)f(z) + c(z)f(qz)− a(z)f(z)− b(z).

Since P (z, 0) = −b(z) 6≡ 0, by Lemma 2.3, we have that m
(

r,
1

f

)

= S(r, f) on E.

Hence N
(

r,
1

f

)

= T (r, f) + S(r, f) on E. Thus, δ(∞, f) = δ(0, f) = 0.

Furthermore, if for an arbitrary constant d, we have that P (z, d) = d2 +

d
(

c(z)−a(z)
)

− b(z) 6≡ 0, by Lemma 2.3, we have that m
(

r,
1

f − d

)

= S(r, f) on E.

Further N
(

r,
1

f − d

)

= T (r, f) + S(r, f) on E. Hence f(z) has no deficient values.

(ii) By the equation (3.2), we obtain that

(3.4) f(qz)− f(z) =
a(z)f(z) + s2(z)

f(z) + a(z)
− f(z) = −

(

f(z)− s(z)
)(

f(z) + s(z)
)

f(z) + a(z)
.

By (3.3), we obtain that

P (z, s(z)) = s(qz)s(z) + a(z)
(

s(qz)− s(z)
)

−
(

s(z)
)2
,(3.5)

P (z,−s(z)) = s(qz)s(z)− a(z)
(

s(qz)− s(z)
)

−
(

s(z)
)2
.(3.6)

If P (
(

z, s(z)
)

≡ 0 and P
(

z,−s(z)
)

≡ 0, by (3.5) and (3.6), we see that

a(z)
(

s(qz)− s(z)
)

≡ 0.

By the assumption that s(z) is nonconstant rational function and |q| 6= 0, 1, we
know that s(qz) − s(z) 6≡ 0. So a(z) ≡ 0, which contradicts with the assumption
that a(z) 6≡ 0. Hence P (z, s(z)) 6≡ 0 or P

(

z,−s(z)
)

6≡ 0. Without loss of generality,

we assume that P
(

z, s(z)
)

6≡ 0. By Lemma 2.3, we obtain that

m

(

r,
1

f(z)− s(z)

)

= o(T (r, f))

on E. Hence

(3.7) N

(

r,
1

f(z)− s(z)

)

= T (r, f) + o
(

T (r, f)
)

on E.
Next, we claim that the zeros of f(z)− s(z) are all the zeros of f(qz)− f(z),

except at most finite many zeros. In fact, by (3.4), if z0 is a common zero of
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f(z) − s(z) and f(z) + a(z), then s(z0) + a(z0) = 0. Since both s(z) and a(z)
are rational functions and s(z) 6≡ −a(z), the number of solutions of the equation
s(z) + a(z) = 0 is finite. Thus the number of the common zeros of f(z)− s(z) and
f(z)+ a(z) is finite. Since the poles of f(z)− s(z) and f(z)+ s(z) are all the poles
of f(z), except at most finite many poles, then the number of points such as z1 is
finite, where z1 is both a zero of f(z)− s(z) and a pole of f(z) + s(z). So

N

(

r,
f(z) + a(z)

(f(z)− s(z))(f(z) + s(z))

)

= N

(

r,
1

f(z)− s(z)

)

+O(log r).

By the above equality and (3.4), we obtain that

N

(

r,
1

f(qz)− f(z)

)

= N

(

r,
f(z) + a(z)

(

f(z)− s(z)
)(

f(z) + s(z)
)

)

= N

(

r,
1

f(z)− s(z)

)

+O(log r).

From this and (3.7), we have that

N

(

r,
1

f(qz)− f(z)

)

= T (r, f) + o
(

T (r, f)
)

on E. Hence f(qz)− f(z) has infinitely many zeros.
By (3.4), we have that

(3.8)
f(qz)− f(z)

f(z)
= −

(

f(z)− s(z)
)(

f(z) + s(z)
)

(

f(z) + a
)

f(z)
.

Using the analogous method, we obtain that

N

(

r,
1

f(qz)− f(z)

f(z)

)

= T (r, f) + o
(

T (r, f)
)

on E. Hence
f(qz)− f(z)

f(z)
has infinitely many zeros.

4. THE EXISTENCE AND FORMS OF RATIONAL SOLUTIONS
OF Q-DIFFERENCE RICCATI EQUATIONS

Chen and Shon [4] consider existence and forms of rational solutions of
difference Riccati equation. In this section, we do the same for q-difference Riccati
equation (1.2).

Theorem 4.1. Let q ∈ C\{0} such that |q| 6= 1 and A(z) =
P (z)

Q(z)
=

cmzm + · · ·+ c0
dnzn + · · ·+ d0

an irreducible rational function, where cm(6= 0), . . . , c0, dn(6= 0), . . . , d0 are con-

stants.
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(1) If m ≥ n and m − n is an even number, then the equation (1.2) has no

rational solutions.

(2) If (1.2) has a rational solution f(z) =
R(z)

S(z)
=

arz
r + · · ·+ a0

bszs + · · ·+ b0
, where

ar(6= 0), . . . , a0, bs(6= 0), . . . , b0 are constants, then :

(i) If m > n and m− n is an odd number, then r − s =
m− n− 1

2
.

(ii) If n−m ≥ 2, then

r = s− 1, ar = −bs or s− r = n−m, dnar = (dnar + cmbs)q
s−r.

(iii) If n−m = 1, then r = s− 1 and (q − 1)dnar(ar + bs) + qcmb2s = 0.

Examples 4.1 and 4.2 show that there exist rational solutions satisfying The-
orem 4.1 (2)(i). Examples 4.3 and 4.4 show that there exist two types of rational
solutions satisfying Theorem 4.1 (2)(ii). Example 4.5 shows that there exist rational
solutions satisfying Theorem 4.1(2)(iii).

Example 4.1. For q =
1

2
, A(z) =

1

2
z3 − 3

2
z2 − z

(z + 1)(z + 2)
, equation (1.2) has a rational solution

f(z) =
z − 1

z + 1
, where r = s,m = 3, n = 2.

Example 4.2. Let q = 2, A(z) =
−4z5 + 2z3 − 3z2

(z − 1)(2z − 1)
. The equation (1.2) has a rational

solution f(z) =
z2

z − 1
, where r = 2, s = 1,m = 5, n = 2.

Example 4.3. Let q =
1

2
, A(z) =

4z

(z2 + 4)(z2 + 1)
. The equation (1.2) has a rational

solution f(z) =
−z + 1

z2 + 1
, where r = 1, s = 2, ar = −1, bs = 1.

Example 4.4. Let q =
1

2
, A(z) =

3z3 − z2 − 4z + 2

z5
. Then the equation (1.2) has a

rational solution

f(z) =
z − 1

z3
.

Example 4.5. Let q =
1

2
. The q-difference Riccati equation

f(qz) =

2z3 − 6z2

(z2 + 4)(z2 + 1)
+ f(z)

1− (q − 1)zf(z)

has a rational solution

f(z) =
z − 1

z2 + 1
.

The following lemma will be used in the proof of Theorem 4.1.

Lemma 4.2. Let R(z) and S(z) be polynomials with degR(z) = r and degS(z) = s
respectively. Let q be a complex constant such that |q| /∈ {0, 1}.

(1) If r 6= s, then deg
(

R(z)S(qz)−R(qz)S(z)
)

= s+ r.
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(2) If r = s, then deg
(

R(z)S(qz)−R(qz)S(z)
)

≤ s+ r − 1.

Proof. Suppose that

R(z) = arz
r + ar−1z

r−1 + · · ·+ a0, S(z) = bsz
s + bs−1z

s−1 + · · ·+ b0,

where ar(6= 0), . . . , a0, bs(6= 0), . . . , b0, are constants. Since

R(z)S(qz)−R(qz)S(z) = arbs(q
s − qr)zr+s

+
(

arbs−1(q
s−1 − qr) + ar−1bs(q

s − qr−1)
)

zr+s−1 + · · · ,

and |q| ∈ R\{0, 1}, if r 6= s, then arbs(q
s − qr) 6= 0, so

deg
(

R(z)S(qz)−R(qz)S(z)
)

= s+ r.

If r = s, then

R(z)S(qz)−R(qz)S(z) = (arbs−1 − ar−1bs)(1− q)qszr+s−1 + · · · ,

so deg
(

R(z)S(qz)−R(qz)S(z)
)

≤ s+ r − 1.

Proof of Theorem 4.1. Suppose that f(z) =
R(z)

S(z)
is a rational solution of (1.2),

where R(z) and S(z) are polynomials with degR(z) = r and deg S(z) = s. Equation
(1.2) can be written as

(4.1) P (z)S(qz)S(z)+Q(z)
(

R(z)S(qz)−R(qz)S(z)
)

+(q−1)zR(qz)R(z)Q(z) = 0.

(1) Suppose that m ≥ n and m− n is an even number. For q ∈ C\{0, 1}, we
have

deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

≤ n+ s+ r.

If r ≤ s− 1, then

n+ s+ r ≤ n+ 2s− 1 < m+ 2s = deg
(

P (z)S(qz)S(z)
)

,

and

deg
(

(q − 1)zR(qz)R(z)Q(z)
)

= 1 + 2r + n ≤ n+ 2s− 1

< m+ 2s = deg
(

P (z)S(qz)S(z)
)

.

Thus, in the left side of (4.1), there is only one term of the highest degree, which
is a contradiction.

If r ≥ s, then

deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

≤ n+ r + s ≤ n+ 2r

< n+ 2r + 1 = deg
(

(q − 1)zR(qz)R(z)Q(z)
)

.

Thus (4.1) implies

deg
(

(q − 1)zR(qz)R(z)Q(z)
)

= n+ 2r + 1 = m+ 2s = deg
(

P (z)S(qz)S(z)
)

.
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It gives r−s =
m− n− 1

2
. It contradicts with the fact that m−n is an even number.

So, the equation (1.2) has no rational solution.

(2) For other cases, suppose that (1.2) has a rational solution f(z) =
R(z)

S(z)
=

arz
r + · · ·+ a0

bszs + · · ·+ b0
, where ar(6= 0), . . . , a0, bs(6= 0), . . . , b0 are constants, we consider

three subcases:
(i) Suppose that m > n and m − n is an odd number. If r ≤ s− 1, then we

see that (4.1) is a contradiction by using the same method as in (1). If r ≥ s, then

n+ r + s ≤ n+ 2r < n+ 2r + 1,

(4.1) implies

deg
(

(q − 1)zR(qz)R(z)Q(z)
)

= n+ 2r + 1 = m+ 2s = deg
(

P (z)S(qz)S(z)
)

.

It gives r − s =
m− n− 1

2
.

(ii) Suppose that n−m ≥ 2. If r ≥ s, then

deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

≤ n+ r + s ≤ n+ 2r

< n+ 2r + 1 = deg
(

(q − 1)zR(qz)R(z)Q(z)
)

.

Since m < n,

deg
(

P (z)S(qz)S(z)
)

= m+ 2s ≤ n+ 2r

< n+ 2r + 1 = deg
(

(q − 1)zR(qz)R(z)Q(z)
)

,

which contradicts (4.1).
If r = s− 1, then combining m+ 1 < n, we obtain that

deg
(

P (z)S(qz)S(z)
)

= m+ 2s = m+ 2r + 2

< n+ 2r + 1 = deg
(

(q − 1)zR(qz)R(z)Q(z)
)

.

Since |q| 6= 0, 1, by Lemma 4.2 and r = s− 1, we have that

deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

= n+ r + s = n+ 2r + 1.

Since

(4.2) R(z) = arz
r + · · ·+ a0, S(z) = bsz

s + · · ·+ b0,

we see that

(4.3) R(qz) = arq
rzr + · · ·+ a0, S(qz) = bsq

szs + · · ·+ b0.

Substituting (4.2), (4.3) and P (z) = cmzm + · · ·+ c0, Q(z) = dnz
n + · · ·+ d0 into

(4.1), we obtain that

(q − 1)ardn(ar + bs)q
rzn+2r+1 + Tn+2r(z) = 0,
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where Tn+2r(z) is a polynomial such that deg Tn+2r ≤ n+2r. Since q 6= 0, 1, ardn 6=
0, by the above equation, it follows that

ar = −bs.

If r < s− 1, then by Lemma 4.2 and |q| 6= 0, 1, we obtain

deg
(

(q − 1)zR(qz)R(z)Q(z)
)

= n+ 2r + 1

< n+ r + s = deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

.

Thus, (4.1) implies that

deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

= n+ r + s = m+ 2s = deg
(

P (z)S(qz)S(z)
)

,

so s − r = n − m. Substituting (4.2), (4.3) and P (z) = cmzm + · · · + c0, Q(z) =
dnz

n + · · ·+ d0 into (4.1), we obtain that
(

dn(arbsq
s−r − arbs) + cmb2sq

s−r
)

qrzn+r+s + Tn+r+s−1(z) = 0,

where Tn+r+s−1(z) is a polynomial such that deg Tn+r+s−1 ≤ n+ r + s− 1. Since
q 6= 0, 1, by the above equation, we see that

dnar = (dnar + cmbs)q
s−r.

(iii) Suppose that n−m = 1. If r ≥ s, using the same method as in (ii), we
see that (4.1) is a contradiction. If r < s− 1, then by Lemma 4.2 and |q| 6= 0, 1, we
obtain

deg
(

(q − 1)zR(qz)R(z)Q(z)
)

= n+ 2r + 1

< n+ r + s = deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

.

Thus, (4.1) implies

deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

= n+ r + s = m+ 2s = deg
(

P (z)S(qz)S(z)
)

,

so s− r = n−m. It contradicts with n−m = 1.
If r = s− 1, by Lemma 4.2,

deg
(

P (z)S(qz)S(z)
)

= m+ 2s = n+ 2r + 1 = deg
(

(q − 1)zR(qz)R(z)Q(z)
)

= n+ r + s = deg
(

Q(z)(R(z)S(qz)−R(qz)S(z))
)

.

Substituting (4.2), (4.3) and P (z) = cmzm + · · ·+ c0, Q(z) = dnz
n + · · ·+ d0 into

(4.1) again, we obtain that
(

(q − 1)dnar(ar + bs) + qcmb 2

s

)

qrzm+2s + Tm+2s−1(z) = 0,

where Tm+2s−1(z) is a polynomial such that degTm+2s−1 ≤ m + 2s − 1. Since
q 6= 0, 1, by the above equation, we see that

(q − 1)dnar(ar + bs) + qcmb2s = 0.
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solutions of generalized Schröder equations. Aequationes Math., 63 (2002), 110–135.

8. R. G. Halburd, R. korhonen: Existence of finite order meromorphic solutions as

a detector of integrability in difference equations. Phys. D, 218 (2006), 191–203.

9. K. Ishizaki: Hypertranscendency of meromorphic solutions of a linear functional

equation. Aequationes Math., 56 (1998), 271–283.

10. K. Ishizaki: On difference Riccati equations and second order linear difference equa-

tions. Aequationes Math., 81 (2011), 185–198.

11. I. Laine: Nevanlinna Theory and Complex Differential Equations. Walter de Gruyter,
Berlin, 1993.

12. I. Laine, C. C. Yang: Clunie theorems for difference and q-difference polymials. J.
Lond. Math. Soc., 76 (2007), 556–566.

13. A. Z. Mohonko, V. D. Mohonko: Estimates of the Nevanlinna characteristics of

certain classes of meromorphic functions and their applications to differential equa-

tions. Sibirsk. Mat. Zh., 15 (1974), 1305–1322. (In Russian.)

14. J. F. Ritt: Transcendental transcendency of certain functions of Poincaré. Math.
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