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ON SO’S CONJECTURE FOR INTEGRAL CIRCULANT

GRAPHS

J.W. Sander, T. Sander

Each integral circulant graph ICG(n,D) is characterised by its order n and a
set D of positive divisors of n in such a way that it has vertex set Z/nZ and
edge set {(a, b) : a, b ∈ Z/nZ, gcd(a− b, n) ∈ D}. According to a conjecture
of So two integral circulant graphs are isomorphic if and only if they are
isospectral, i.e. they have the same eigenvalues (counted with multiplicities).
We prove a weaker form of this conjecture, namely, that two integral circulant
graphs with multiplicative divisor sets are isomorphic if and only if their
spectral vectors coincide.

1. INTRODUCTION AND RESULTS

The vivid question “Can one hear the shape of a drum?”, posed by Kac

[11] in 1966, has become a synonym for the considerably older and much more
general problem to decide whether a Riemannian manifold is determined by its
spectrum. In [7] Fisher formulated the discrete analogue of Kac’s question and
thus transferred it to the examination of spectra of linear graphs by use of their
adjacency matrices. Originating from a problem in chemistry [8], it has been asked
in general since the mid-twentieth century which graphs are determined by their
spectrum, and some answers were given for different types of graphs (cf. [6] for
a survey). Our paper addresses this problem with regard to the class of integral
circulant graphs and partially proves a conjecture of So [19].

Integral circulant graphs are those having a circulant adjacency matrix with
integral spectrum, i.e. all eigenvalues of the adjacency matrix are integers. By the
works of So [19] and Klotz and T. Sander [12] each integral circulant graph

2010 Mathematics Subject Classification. Primary 05C50, Secondary 11L03.
Keywords and Phrases. Cayley graph, integral graph, circulant graph, graph spectrum, multiplica-

tive divisor set.

59



60 J.W. Sander, T. Sander

ICG(n,D) is characterised by its order n and a set D ⊆ D(n) := {d > 0 : d | n}
of positive divisors of n in such a way that it has vertex set Z/nZ and edge set
{(a, b) : a, b ∈ Z/nZ, gcd(a− b, n) ∈ D}. These graphs comprise algebraic, arith-
metic and combinatorial features at the same time, and quite a lot of interesting
results have been obtained in recent years (see [16] for references). In particular,
the examination of the spectra of integral circulant graphs attracted a lot of at-
tention (cf. [1], [2], [9], [17], [18]). It should be noted that one usually assumes
n /∈ D, since ICG(n,D) has loops otherwise. Moreover, it is known that ICG(n,D)
is connected only if the elements of D are coprime (cf. [5, Prop. 1]). However, our
results also hold if these conditions are violated.

According to a Conjecture of So (cf. [19, Conj. 7.3] and [10, page 2]) two
integral circulant graphs are isomorphic if and only if they are isospectral (or,
synonymously, cospectral, i.e. they have the same spectrum). More precisely,

Conjecture of So. Let n be a positive integer, and let D, E ⊆ D(n) be two arbitrary

divisor sets of n. Then the integral circulant graphs ICG(n,D) and ICG(n, E) are

isomorphic if and only if the sets of eigenvalues (counted with multiplicities) of the
two graphs are equal.

As already observed by So the conjecture holds for all prime powers n (cf.
[19, Sect. 7]), assuming the graphs to have no loops. This can be shown quite eas-
ily, for instance by verifying that two loopless integral circulant graphs of the same
prime power order with different divisor sets have different largest eigenvalues (see
Corollary 2.2 below). This is no longer true for graphs of order different from prime
powers as shown by the two connected graphs ICG(6, {1, 3}) and ICG(6, {2, 3}),
both having largest eigenvalue 3. Apart from the aforementioned result, the con-
jecture has been verified only for very special cases, e.g. n being a product of two
primes, or n being squarefree and divisor sets having at most two prime elements
(cf. [10]).

In [19, Sect. 3] one can find an example of two circulant graphs, i.e. Cayley
graphs on cyclic groups, which are non-isomorphic but have the same spectrum.
This shows that So’s Conjecture in general requires the integrality condition. It is
also easy to find non-isomorphic integral circulant graphs of the same order with
different divisor sets having the same spectrum if we neglect the multiplicities of the
eigenvalues. For instance, ICG(48, {2, 3, 4, 24}) and ICG(48, {2, 3, 8, 16, 24}) have
the same set {21, 5, 3,−1,−3,−13} of eigenvalues, but these occur with different
multiplicities and therefore the two graphs are not isomorphic.

In the sequel we shall prove a weaker form of the Conjecture of So. In order
to formulate our additional requirements we need some further terminology, namely
multiplicative divisor sets and spectral vectors.

The idea to study the subclass of integral circulant graphs ICG(n,D) with
multiplicative divisor sets D was introduced by Le and the first author in [13].
They applied this new concept successfully in [14] to improve results on extremal
energies of integral circulant graphs for arbitrary n. In [15] the first author used it
again to consider questions concerning integral circulant Ramanujan graphs. For a
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positive integer d and a number p in the set P of all primes, we denote by ep(d) the
order of p in d. A non-empty finite set D of positive integers is called multiplicative

if D =
∏

p∈P

Dp, where Dp := {pep(a) : d ∈ D} for each prime p, and the product

of sets D1, . . . , Dt of positive integers is defined as
t
∏

i=1

Di := {d1 · · · dt : di ∈ Di}.

Observe that Dp 6= {1} only for those finitely many primes dividing at least one of

the d ∈ D. Hence
∏

p∈P

Dp can be regarded as a finite product for any finite set D.

The spectral vector of an integral circulant graph ICG(n,D) with an arbitrary
positive integer n and arbitrary divisor set D ⊆ D(n) is defined as

~λ(n,D) :=
(
λ1(n,D), λ2(n,D), . . . , λn(n,D)

)
,

where

(1) λℓ(n,D) =
∑

d∈D

c
(

ℓ,
n

d

)

(1 ≤ ℓ ≤ n)

are the eigenvalues of ICG(n,D) with multiplicities [12, Theor. 16]. Here

c(ℓ, n) :=
∑

j mod n
(j,n)=1

e
(
ℓj

n

)

denotes the well-known Ramanujan sum (cf. [3, chapt. 8.3-8.4]), and we use the
notation e(x) := e2πix for real x. Note that

(2) ~λ(n,D1 ∪ D2) = ~λ(n,D1) + ~λ(n,D2)

for disjoint D1,D2 ⊆ D(n).

Weak Conjecture of So. Let n be a positive integer, and let D, E ⊆ D(n) be two

multiplicative divisor sets of n. Then ICG(n,D) and ICG(n, E) are isomorphic if

and only if ~λ(n,D) = ~λ(n, E).

Our first result provides an explicit formula for the eigenvalues of arbitrary
integral circulant graphs with multiplicative divisor sets.

Theorem 1.1. Let n be a positive integer with prime factorisation n = pk1

1 · · · pkr
r ,

and let D = Dp1
· · · Dpr

⊆ D(n) be a multiplicative divisor set of n, where Dpj
=

{p
kj,1

j , p
kj,2

j , . . . , p
kj,sj

j }, say, with 0 ≤ kj,1 < kj,2 < · · · < kj,sj ≤ kj for 1 ≤ j ≤ r.

Given some ℓ, 1 ≤ ℓ ≤ n, we define p
tj
j := gcd(ℓ, p

kj

j ) for 1 ≤ j ≤ r. Then

λℓ(n,D) =

r∏

j=1

(

− χ(p
kj

j ,Dpj
, tj)p

tj
j +

sj∑

i=1
kj,i≥kj−tj

ϕ
(
p
kj−kj,i

j

)
)

,
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where ϕ denotes Euler’s totient function and

(3) χ(pk,D, t) :=

{
1 if ki = k − t− 1 for some 1 ≤ i ≤ s,
0 otherwise,

for 0 ≤ t ≤ k and D = {pk1 , pk2 , . . . , pks}, say, with 0 ≤ k1 < k2 < · · · < ks ≤ k.

The following theorem proves the Weak Conjecture of So.

Theorem 1.2. Let D, E ⊆ D(n) be two multiplicative divisor sets of the positive in-

teger n. Then the integral circulant graphs ICG(n,D) and ICG(n, E) are isomorphic

if and only if the corresponding spectral vectors satisfy ~λ(n,D) = ~λ(n, E).

In order to give an impression of the significance of Theorem 1.2 as compared
to the original Conjecture of So we determine the proportion of multiplicative
divisor sets among all divisor sets for any given positive integer n. To this end, we
define δ(n) to be the number of divisor sets of n and µ(n) to be the number of
multiplicative divisor sets of n.

Proposition 1.1. Let n > 1 be an integer with prime factorisation n = pk1

1 · · · pkr
r .

Then δ(n) = 2(k1+1)···(kr+1) and µ(n) = 2(k1+1)+···+(kr+1).

Proof. Clearly, the set of all divisor sets is the power set P(D(n)) of the set
D(n) of all divisors of n. Hence |D(n)| = d(n) for the well-known multiplicative
divisor function d(n). A standard result in elementary number theory says that

d(n) =
r∏

i=1

(ki + 1), and therefore

δ(n) = |P(D(n))| = 2d(n) = 2(k1+1)···(kr+1).

In comparison, each multiplicative divisor set D of n is uniquely represented by

D = Dp1
· · · Dpr

, where each Dpj
⊆ D(p

kj

j ). Hence

µ(n) =

r∏

j=1

|P(D(p
kj

j ))| =
r∏

j=1

2|D(p
kj

j
)| =

r∏

j=1

2kj+1 = 2(k1+1)+···+(kr+1). �

For any prime power pk all divisor sets D ⊆ D(pk) are trivially multiplicative.
More precisely, Proposition 1.1 shows that δ(pk) = µ(pk) = 2k+1. In general,
Proposition 1.1 reveals that for integers n with at least two distinct prime factors
the proportion of multiplicative divisor sets among all divisor sets of n decreases
rapidly with growing number of distinct prime factors and with growing exponents
in the prime factorisation of n.

However, the study of integral circulant graphs with multiplicative divisor
sets turned out to be fruitful with regard to problems concerning extremal energies
of ICGs [14] or the identification of Ramanujan graphs in the class of ICGs [15].
Integral circulant graphs with multiplicative divisor sets seem to have a certain
degree of representativity for ICGs in general. Apart from that Theorem 1.2 is the
only non-trivial case where the Conjecture of So could be verified so far, namely
for graphs ICG(n,D) with arbitrary n and arbitrarily large divisor sets D.
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2. SPECTRAL VECTORS FOR ICGS OF PRIME POWER ORDER

A typical example of the spectral vector of an integral circulant graph of
prime power order looks like

~λ
(

35, {1, 32, 33}
)

=
(

0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0, 24,
0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0, 24,
0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−57,
0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0, 24,
0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0, 24,
0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−57,
0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0, 24,
0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0, 24
0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0,−3, 0, 0, 186

)

.

The entries in ~λ(35, {1, 32, 33}) reveal some kind of pseudo-periodicity. The basis
for specifying this observation in general is

Proposition 2.2. Let pk be a prime power and D ⊆ D(pk). Let 1 ≤ ℓ ≤ pk and

set pt := gcd(ℓ, pk).

(i) We have λℓ(p
k,D) = λpt(pk,D).

(ii) For D = {pk1 , . . . , pks}, say, with 0 ≤ k1 < k2 < · · · < ks ≤ k we have

λℓ(p
k,D) = −χ(pk,D, t)pt +

s∑

i=1
ki≥k−t

ϕ(pk−ki ),

where χ is defined as in (3).

Proof. By assumption ℓ = ptm for some integer m not divisible by p. According
to (1) we have

λℓ(p
k,D) =

∑

d∈D

c
(

ℓ,
pk

d

)

=
∑

d∈D

∑

j mod pk

d

gcd(j, p
k

d
)=1

e
(
ℓdj

pk

)

(4)

=
s∑

i=1

∑

j mod pk−ki

p∤j

e
(

mj

pk−t−ki

)

=

s∑

i=1
ki<k−t

∑

j mod pk−ki

p∤j

e
(

mj

pk−t−ki

)

+

s∑

i=1
ki≥k−t

∑

j mod pk−ki

p∤j

1

=

s∑

i=1
ki<k−t

pt
∑

j mod pk−t−ki

p∤j

e
(

mj

pk−t−ki

)

+

s∑

i=1
ki≥k−t

ϕ(pk−ki).
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Since p ∤ m, the set of integersmj with j mod pk−t−ki , p ∤ j, runs through a reduced
residue system mod pk−t−ki . Hence

(5)
∑

j mod pk−t−ki

p∤j

e
(

mj

pk−t−ki

)

=
∑

j mod pk−t−ki

p∤j

e
(

j

pk−t−ki

)

,

which shows that λℓ(p
k,D) does not depend on m, and this already proves (i).

Some elementary computations involving geometric sums reveal that for any
positive integer u

∑

j mod pu

p∤j

e
(

j

pu

)

=

pu

∑

j=1

e
(

1

pu

)j

−

pu−1

∑

j=1

e
(
pj

pu

)

= −

pu−1

∑

j=1

e
(

1

pu−1

)j

=

{
−1 for u = 1,
0 for u ≥ 2.

Inserting this identity into (5) and the result into (4), (ii) follows.

Before we turn our attention to the crucial observation concerning the position
and value of the first non-zero entry in the spectral vector ~λ(pk,D) of ICG(pk,D)
(cf. Proposition 2.4), let us deduce several easy consequences of Proposition 2.2.

Corollary 2.1. Let pk be a prime power and D ⊆ D(pk).

(i) For 0 ≤ u ≤ v ≤ k, we have |λpu(pk,D)| ≤ |λpv (pk,D)|.

(ii) λpk(pk,D) is positive and the largest eigenvalue of ICG(pk,D).

Proof. Assertion (ii) is an immediate consequence of (i), Proposition 2.2 (i) and
the fact that χ(pk,D, k) = 0. Therefore it remains to verify (i).

It suffices to prove that |λpu(pk,D)| ≤ |λpu+1(pk,D)| for 0 ≤ u < k. In order
to apply Proposition 2.2 (ii) let D = {pk1 , . . . , pks}, say, with 0 ≤ k1 < k2 < · · · <
ks ≤ k and set K := {k1, . . . , ks}. Then Proposition 2.2 (ii) implies for 0 ≤ t ≤ k
that

λpt(pk,D) = −χ(pk,D, t)pt +

s∑

i=1
ki≥k−t

ϕ(pk−ki )

=







s
∑

i=1

ki≥k−t

ϕ(pk−ki ) if k − t− 1 /∈ K,

−pt +
s

∑

i=j+1

ϕ(pk−ki ) if kj := k − t− 1 ∈ K,

hence

(6)
∣
∣λpt(pk,D)

∣
∣ =







s
∑

i=1

ki≥k−t

ϕ(pk−ki ) if k − t− 1 /∈ K,

pk−kj−1 −
s

∑

i=j+1

ϕ(pk−ki ) if kj := k − t− 1 ∈ K.
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Case 1: k − u− 1 /∈ K and k − (u+ 1)− 1 /∈ K.
It follows from (6) that

∣
∣λpu(pk,D)

∣
∣ =

s∑

i=1
ki≥k−u

ϕ(pk−ki ) ≤
s∑

i=1
ki≥k−(u+1)

ϕ(pk−ki) =
∣
∣λpu+1(pk,D)

∣
∣ .

Case 2: kj := k − u− 1 ∈ K and k − (u+ 1)− 1 /∈ K.
Again by (6), we obtain that

∣
∣λpu(pk,D)

∣
∣ = pk−kj−1 −

s∑

i=j+1

ϕ(pk−ki ) ≤ pk−kj−1 ≤ ϕ(pk−kj )

≤
s∑

i=1
ki≥kj

ϕ(pk−ki ) =

s∑

i=1
ki≥k−(u+1)

ϕ(pk−ki ) =
∣
∣λpu+1(pk,D)

∣
∣ .

Case 3: k − u− 1 /∈ K and kj−1 := k − (u+ 1)− 1 ∈ K.
Since k − u− 1 /∈ K, we have kj ≥ kj−1 + 2 in this case. With this (6) yields that

∣
∣λpu(pk,D)

∣
∣ =

s∑

i=1
ki≥k−u

ϕ(pk−ki) =

s∑

i=1
ki≥kj−1+2

ϕ(pk−ki ) =

s∑

i=j

ϕ(pk−ki )

≤ pk−kj+1 −
s∑

i=j

ϕ(pk−ki) ≤ pk−kj−1−1 −
s∑

i=j

ϕ(pk−ki )

=
∣
∣λpu+1(pk,D)

∣
∣ .

Case 4: kj := k − u− 1 ∈ K and kj−1 := k − (u+ 1)− 1 ∈ K.
In this situation (6) implies

∣
∣λpu(pk,D)

∣
∣ = pk−kj−1 −

s∑

i=j+1

ϕ(pk−ki ) = pk−kj−1 + ϕ(pk−kj )−
s∑

i=j

ϕ(pk−ki )

= pk−kj −
s∑

i=j

ϕ(pk−ki ) = pk−kj−1−1 −
s∑

i=j

ϕ(pk−ki) =
∣
∣λpu+1(pk,D)

∣
∣ ,

which completes the proof. �

It is well known that integral circulant graphs are regular, and incidentally
their largest eigenvalue Λ(pk,D) = λpk(pk,D) (see Corollary 2.1 (ii)) equals their
degree of regularity (cf. [4]). The proof of the following result shows that loopless
integral circulant graphs of any prime power order pk are uniquely determined not
only by their spectrum, but even by Λ(pk,D) alone.

Corollary 2.2. Let pk be an arbitrary prime power, and let D, E ⊆ D(pk−1) be

arbitrary divisor sets. If Λ(pk,D) = Λ(pk, E), then D = E .
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Proof. Let D = {pk1 , . . . , pks} and E = {pℓ1, . . . , pℓt} with 0 ≤ k1 < · · · < ks < k
and 0 ≤ ℓ1 < · · · < ℓt < k, say. By our assumption it follows from Proposition 2.2
and Corollary 2.1 that

(7)

s∑

i=1

ϕ(pk−ki ) = λpk(pk,D) = λpk(pk, E) =
t∑

i=1

ϕ(pk−ℓi).

Since ks < k and ℓt < k, it follows from (7) that

(p− 1)
s∑

i=1

pk−ki−1 = (p− 1)
t∑

j=1

pk−ℓj−1.

Dividing by (p−1) we have equality between two integers in p-adic representations.
Hence {k1, . . . , ks} = {ℓ1, . . . , ℓt}, i.e. D = E .

The next statement implies that the Conjecture of So holds for loopless
graphs of arbitrary prime power order.

Corollary 2.3. Two loopless integral circulant graphs ICG(pk,D) and ICG(pk, E)
of prime power order pk are isomorphic if and only if D = E .

Proof. As pointed out in the introduction, an integral circulant graph of order
pk has loops if and only if pk lies in the divisor set. By assumption, pk /∈ D and
pk /∈ E . Hence Corollary 2.2 implies our claim.

Given a prime power pk and a divisor set D ⊆ D(pk), we call λ1(p
k,D),

i.e. the first entry of the spectral vector ~λ(pk,D) of ICG(pk,D), its dominating

eigenvalue. As another consequence of Proposition 2.2 we obtain the justification
for the chosen naming.

Corollary 2.4. Let pk be a prime power and D ⊆ D(pk) any divisor set.

(i) The dominating eigenvalue of ICG(pk,D) satisfies

λ1(p
k,D) =







+1 if pk ∈ D and pk−1 /∈ D,
−1 if pk /∈ D and pk−1 ∈ D,
0 otherwise.

(ii) The multiplicity of λ1(p
k,D) is at least pk − pk−1.

Proof. The formula in (i) follows from Proposition 2.2 (ii) with t = 0. By Propo-
sition 2.2 (i) we have λℓ(p

k,D) = λ1(p
k,D) for all 1 ≤ ℓ ≤ pk satisfying p ∤ ℓ. The

number of these ℓ equals ϕ(pk) = pk − pk−1, which proves (ii).

For later purposes we have to extend Corollary 2.2 to integral circulant graphs
which might have loops. Unfortunately, this relaxation complicates matters quite
a bit, since now integral circulant graphs of prime power order cannot be distin-
guished anymore by their largest eigenvalue alone.
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Proposition 2.3. Let pk be an arbitrary prime power.

(i) If Λ(pk,D) = Λ(pk, E) for some D, E ⊆ D(pk), then either

(α) D = E or

(β) p = 2, D ⊆ D(2k−1) arbitrary and, with 2kmax := maxD,
E = D \ {2kmax} ∪ {2kmax+1, 2kmax+2, . . . , 2k−1, 2k}, or vice versa.

(ii) Let p = 2, and let D and E be as in (β). Then λ2t(2
k,D) 6= λ2t(2

k, E) for

t := k − kmax − 1, in particular ~λ(2k,D) 6= ~λ(2k, E).

Proof. In order to verify (i) let D = {pk1 , . . . , pks} and E = {pℓ1, . . . , pℓt} with
0 ≤ k1 < · · · < ks ≤ k and 0 ≤ ℓ1 < · · · < ℓt ≤ k, say. As in the proof of Corollary
2.2 it follows from our assumption in (i), Proposition 2.2 and Corollary 2.1 that

(8)

s∑

i=1

ϕ(pk−ki ) = λpk(pk,D) = λpk(pk, E) =
t∑

i=1

ϕ(pk−ℓi).

For ks < k and ℓt < k assertion (i) was already shown in Corollary 2.2. If
ks = ℓt = k, we subtract the equal summands for i = s and j = t, respectively,
in (8), and the argument in the proof of Corollary 2.2 yields {k1, . . . , ks−1} =
{ℓ1, . . . , ℓt−1}, thus D = E .

We are left with the case where exactly one of the integers ks and ℓt equals
k. Without loss of generality we may assume that ks < k and ℓt = k, hence D 6= E .
We obtain from (8) that

(p− 1)

s∑

i=1

pk−ki−1 = 1 + (p− 1)

t−1∑

j=1

pk−ℓj−1.

It follows immediately that p = 2, hence

(9)

s∑

i=1

2k−ki−1 = 1 +

t−1∑

j=1

2k−ℓj−1.

Let m ∈ {1, 2, . . . ,min{s, t}} be minimal with km 6= ℓm. Clearly, m exists due to
the fact that D 6= E . Consequently,

X := {2k1 , 2k2 , . . . , 2km−1} = {2ℓ1, 2ℓ2 , . . . , 2ℓm−1},

where X is possibly empty. Then (9) yields

(10)

s∑

i=m

2k−ki−1 = 1 +

t−1∑

j=m

2k−ℓj−1.

Trivially, k − km − 1 ≥ k − ℓm − 1, and obviously

2k−km−1 ≤
s∑

i=m

2k−ki−1 = 1 +
t−1∑

j=m

2k−ℓj−1 ≤ 2k−ℓm .
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We obtain k − ℓm − 1 ≤ k − km − 1 ≤ k − ℓm. Since km 6= ℓm, we conclude that
km = ℓm − 1. Inserting this into (10) we get

2k−ℓm ≤ 2k−ℓm +

s∑

i=m+1

2k−ki−1

︸ ︷︷ ︸

(⋄)

= 1 + 2k−ℓm−1 +

t−1∑

i=m+1

2k−ℓi−1

︸ ︷︷ ︸

(∗)

(11)

≤ 1 +

k−ℓm−1∑

j=0

2j = 2k−ℓm .

Therefore, equality holds in (11), thus (∗) contains all powers of 2 up to the exponent
k−ℓm−1 and (⋄) vanishes. This implies that ℓm+i = ℓm+i for i = 1, 2, . . . , t−m−1
and t−m = k − ℓm. Consequently,

D = X ∪ {2km} = X ∪ {2ℓm−1} and E = X ∪ {2ℓm , 2ℓm+1, . . . , 2k−1, 2k},

where ℓm > ℓm−1 + 1. This proves (i).

It remains to show (ii). As a consequence of (2) we have for X := D\{2kmax}
and Y := {2kmax+1, 2kmax+2, . . . , 2k−1, 2k} that

~λ(2k, E)− ~λ(2k,D) =
(
~λ(2k,X ) + ~λ(2k,Y)

)
−
(
~λ(2k,X ) + ~λ(2k, {2kmax})

)
(12)

= ~λ(2k,Y)− ~λ
(
2k, {2kmax}

)
.

By use of Propositon 2.2 (ii) we obtain for t = k − kmax − 1 that χ(2k,Y, t) = 0
and χ(2k, {2kmax}, t) = 1, hence

λ2t(2
k,Y) =

k∑

i=kmax+1

ϕ(2k−i) = 2k−kmax−1

and λ2t(2
k, {2kmax}) = −2t. By (12) it follows that λ2t(2

k, E) − λ2t(2
k,D) = 2t+1,

which confirms (ii).

It will be crucial for our proof of the Weak So Conjecture to determine the
position and the value of the first non-zero entry in the spectral vector of integral
circulant graphs of prime power order.

Proposition 2.4. Let pk be a prime power and D ⊆ D(pk). For

(13) m0 = m0(p
k,D) := min

{
0 ≤ m ≤ k : λpm(pk,D) 6= 0

}

we have

(i) m0 = k −m∗ − 1, where

m∗ = m∗(pk,D) :=







−1 if D = D(pk),
max {0 ≤ j < k : pj /∈ D} if pk ∈ D 6= D(pk),
max {0 ≤ j < k : pj ∈ D} if pk /∈ D;
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(ii) λpm0 (pk,D) = ε(pk,D)pm0 , where

ε(pk,D) :=

{
+1 if pk ∈ D,
−1 if pk /∈ D.

Proof. According to Proposition 2.2 (ii), we have λpm(pk,D) = 0 if and only if

(14)

s∑

i=1
ki≥k−m

ϕ(pk−ki ) = χ(pk,D,m)pm

with D = {pk1 , . . . , pks}, say. Clearly

s∑

i=1
ki≥k−m

ϕ(pk−ki) ≤
m∑

j=0

ϕ(pj) = pm,

where equality holds if and only if {pk−m, pk−m+1, . . . , pk} ⊆ D. Hence

s∑

i=1
ki≥k−m

ϕ(pk−ki ) =

{
pm if {pk−m, pk−m+1, . . . , pk} ⊆ D,
0 if {pk−m, pk−m+1, . . . , pk} ∩ D = ∅.

Therefore, (14) holds if and only if {pk−m, pk−m+1, . . . , pk} ⊆ D and χ(pk,D,m) =
1, i.e. {pk−m−1, pk−m, . . . , pk} ⊆ D, or {pk−m, pk−m+1, . . . , pk} ∩ D = ∅ and
χ(pk,D,m) = 0, i.e. {pk−m−1, pk−m, . . . , pk} ∩ D = ∅. In other words, (14)
holds for m ≤ M if and only if m∗ ≤ k − M − 2. Setting M = m0 − 1 implies
m0 = M + 1 = k −m∗ − 1, thus (i) is proven.

By Proposition 2.2 (ii) and the fact that m∗ = k −m0 − 1 by (i), we obtain

λpm0 (pk,D) =

{

0 +
(
ϕ(pm0) + ϕ(pm0−1) + · · ·+ ϕ(p) + ϕ(1)

)
= pm0 if pk ∈ D,

−pm0 + 0 = −pm0 if pk /∈ D,

and this verifies (ii).

3. SPECTRAL VECTORS FOR ICGS OF ARBITRARY ORDER

Proof of Theorem 1.1. Le and the first author proved in [13, Prop. 4.1] that

λℓ(n,D) =
r
∏

j=1

λℓ(p
kj

j ,Dpj
) for 1 ≤ ℓ ≤ n, where ℓ in λℓ(p

kj

j ,Dpj
) is to be understood

as the residue of ℓ mod p
kj

j . As a consequence of this and Proposition 2.2 we obtain
that
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λℓ(n,D) =
r∏

j=1

λ
gcd(ℓ,p

kj
j

)

(
p
kj

j ,Dpj

)
=

r∏

j=1

λ
p
tj

j

(
p
kj

j ,Dpj

)
(15)

=

r∏

j=1

(

− χ(p
kj

j ,Dpj
, tj)p

tj
j +

sj∑

i=1
kj,i≥kj−tj

ϕ
(
p
kj−kj,i

j

)
)

.

Proof of Theorem 1.2. If ICG(n,D) and ICG(n, E) are isomorphic, we trivially

have ~λ(n,D) = ~λ(n, E). We have to prove the converse and assume that ~λ(n,D) =
~λ(n, E).

Let n = pk1

1 · · · pkr
r , say, be the prime power factorisation of n, and let D =

Dp1
· · · Dpr

and E = Ep1
· · · Epr

be the factorisations of the multiplicative divisor

sets D and E . It follows from (15) and ~λ(n,D) = ~λ(n, E) that for all 0 ≤ ℓj ≤ kj ,
1 ≤ j ≤ r,

(16)

r∏

j=1

λ
p
ℓj

j

(
p
kj

j ,Dpj

)
= λ

p
ℓ1
1

···pℓr
r
(n,D) = λ

p
ℓ1
1

···pℓr
r
(n, E) =

r∏

j=1

λ
p
ℓj

j

(
p
kj

j , Epj

)
.

We set (cf. (13) for the definition of m0)

dj := m0(p
kj

j ,Dpj
), ej := m0(p

kj

j , Epj
)

for 1 ≤ j ≤ r. Applying (16) for ℓj := dj , 1 ≤ j ≤ r, we obtain by use of Proposition
2.4 (ii)

±
r∏

j=1

p
dj

j =

r∏

j=1

ε(p
kj

j ,Dpj
)p

dj

j =

r∏

j=1

λ
p
dj
j

(
p
kj

j , Epj

)
,

hence λ
p
dj

j

(p
kj

j , Epj
) 6= 0 for each j, i.e. dj ≥ ej for all j. By symmetry, we also

have ej ≥ dj for all j, which means that dj = ej for each j. Knowing this, we use
identity (16) once more, setting ℓj := dj = ej for 1 ≤ j ≤ r, j 6= i for some i. Now
Proposition 2.4 (ii) implies

λ
p
ℓi
i

(
pki

i ,Dpi

)
r∏

j=1
j 6=i

p
dj

j = ±λ
p
ℓi
i

(
pki

i , Epi

)
r∏

j=1
j 6=i

p
ej
j ,

thus λ
p
ℓi
i

(pki

i ,Dpi
) = ±λ

p
ℓi
i

(pki

i , Epi
) for all ℓi and all 1 ≤ i ≤ r. In particu-

lar, λ
p
ki
i

(pki

i ,Dpi
) = ±λ

p
ki
i

(pki

i , Epi
) for all i. By Corollary 2.1 (ii) we know that

λ
p
ki
i

(pki

i ,Dpi
) and λ

p
ki
i

(pki

i , Epi
) are both positive and the largest eigenvalues of the

corresponding spectra, thus

(17) Λ(pki

i ,Dpi
) = λ

p
ki
i

(pki

i ,Dpi
) = λ

p
ki
i

(pki

i , Epi
) = Λ(pki

i , Epi
) for 1 ≤ i ≤ r.
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It follows from Proposition 2.3 (i) that the divisor sets Dpi
and Epi

are equal for
all i with pi 6= 2. Hence, if 2 ∤ n or D2 = E2, the multiplicativity of the divisor sets
immediately yields D = E , which proves the theorem.

We are left with the case 2 | n and D2 6= E2, and may assume that p1 = 2.
According to Proposition 2.3 (i) we have without loss of generality that

D2 ⊆ D(2k1−1) and E2 = D2 \ {2
kmax} ∪ {2kmax+1, 2kmax+2, . . . , 2k−1, 2k1},

where 2kmax := maxD2. Now Proposition 2.3 (ii) tells us that λ2t(2
k1 ,D2) 6=

λ2t(2
k1 , E2) for t := k1 − kmax − 1. We know from (16)

λ2t
(
2k1 ,D2

)
r∏

j=2

λ
p
kj
j

(
p
kj

j ,Dpj

)
= λ

2t·p
k2
2

···pkr
r
(n,D) = λ

2t·p
k2
2

···pkr
r
(n, E)

= λ2t
(
2k1 , E2

)
r∏

j=2

λ
p
kj
j

(
p
kj

j , Epj

)
,

but taking account of (17) we obtain λ2t(2
k1 ,D2) = λ2t(2

k1 , E2). This contradiction
completes the proof.
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