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INTEGRABLE BOEHMIANS, FOURIER

TRANSFORMS, AND POISSON’S

SUMMATION FORMULA

Dennis Nemzer

The space of integrable Boehmians β`(R) contains a subspace which can
be identified with L1(R). The Fourier transform can be defined for each
element of β`(R). The Fourier transform of an integrable Boehmian is a
continuous function which satisfies a growth condition. We investigate the
Fourier transform on β`(R), and as an application, we extend Poisson’s
summation formula to the space β`(R).

1. INTRODUCTION

Boehmians are classes of generalized functions whose construction is alge-
braic. The first construction appeared in a paper that was published in 1981 [6].

In [8], P. Mikusiński constructs a space of Boehmians, βL1(R), in which each
element has a Fourier transform. Mikusiński shows that the Fourier transform
of a Boehmian satisfies some basic properties, and he also proves an inversion
theorem. However, the range of the Fourier transform is not investigated. Also,
Mikusiński states that βL1(R) contains some elements which are not Schwartz

distributions, but no examples are given. We will address these problems in this
paper.

In this note, we will construct a space of Boehmians β`(R). The space of
integrable functions on the real line can be identified with a proper subspace of
β`(R). Each element of β`(R) has a Fourier transform which is a continuous
function and satisfies a growth condition at infinity. Conditions are given which
ensure that a given function is the Fourier transform of an element of β`(R).
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The space β`(R) is slightly less general than the space Mikusiński constructs.
However, each element of β`(R) has local properties similar to those of a continuous
function. For example, each Boehmian has a support. Also, as we will see, each
element of β`(R) satisfies a version of Poisson’s summation formula.

This article is organized as follows. Section 2 contains notation and the
construction of the space of Boehmians. In Section 3, we construct and investigate
the space of integrable Boehmians β`(R). Section 4 contains the construction and
some known facts about the space of periodic Boehmians. In Section 5, as an
application, we prove the Poisson summation formula for integrable Boehmians.

2. PRELIMINARIES

Let L1
loc(R) denote the space of all locally integrable functions on the real line

R, and let D(R) be the subspace of L1
loc(R) of all infinitely differentiable functions

with compact support.

For f ∈ L1
loc(R), let

γn(f) =
∫

|x|≤n

|f(x)| dx, for n = 1, 2, . . . .

The separating countable family of seminorms {γn} generate a topology for
L1

loc(R). A sequence of locally integrable functions {fn} converges in L1
loc(R) to

f ∈ L1
loc(R) provided that for each p, γp(fn − f) → 0 as n→ ∞.

A sequence ϕn ∈ D(R) is called a delta sequence provided:

(i)
∞∫

−∞

ϕn(x) dx = 1 for all n ∈ N,

(ii)
∞∫

−∞

|ϕn(x)| dx ≤M for some constant M and all n ∈ N,

(iii) suppϕn → {0} as n→ ∞.

A pair of sequences (fn, ϕn) is called a quotient of sequences if fn ∈ L1
loc(R)

for n ∈ N, {ϕn} is a delta sequence, and fk ∗ ϕm = fm ∗ ϕk for all k,m ∈ N, where
∗ denotes convolution:

(f ∗ ϕ)(x) =
∞∫

−∞

f(x− u)ϕ(u) du.

Two quotients of sequences (fn, ϕn) and (gn, ψn) are said to be equivalent if
fk ∗ψm = gm ∗ϕk for all k,m ∈ N. A straightforward calculation shows that this is
an equivalence relation. The equivalence classes are called Boehmians. The space
of all Boehmians will be denoted by β(R) and a typical element of β(R) will be

written as F =

[
fn

ϕn

]
.
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The operations of addition, scalar multiplication, and differentiation are de-
fined as follows:

(2.1)

[
fn

ϕn

]
+

[
gn

ψn

]
=

[
fn ∗ ψn + gn ∗ ϕn

ϕn ∗ ψn

]
,

(2.2) α

[
fn

ϕn

]
=

[
αfn

ϕn

]
,where α ∈ C,

(2.3) Dk

[
fn

ϕn

]
=

[
fn ∗Dkϕn

ϕn ∗ ϕn

]
.

If f is a locally integrable function on R, then it can be identified with the

Boehmian

[
f ∗ ϕn

ϕn

]
. Thus, we may view L1

loc(R) as a subspace of β(R). Likewise,

the space of Schwartz distributions [14] can be identified with a proper subspace
of β(R).

For ψ ∈ D(R) and F =

[
fn

ϕn

]
∈ β(R), F ∗ ψ is defined as F ∗ ψ =

[
fn ∗ ψ

ϕn

]
.

Definition 2.1. A sequence of Boehmians {Fn} is said to be δ-convergent to a

Boehmian F, denoted δ-limn→∞ Fn = F, if there exists a delta sequence {ϕn} such

that Fn ∗ϕk, F ∗ϕk ∈ L1
loc(R) for all k, n ∈ N, and for each k ∈ N, Fn ∗ϕk → F ∗ϕk

in L1
loc(R) as n→ ∞.

For more on δ-convergence, see [7].

3. INTEGRABLE BOEHMIANS

Denote by L1(R) the space of complex-valued Lebesgue integrable functions
on the real line R. The space of integrable Boehmians will be denoted by β`(R).

Thus, F =

[
fn

ϕn

]
∈ β`(R) provided that F ∈ β(R) and fn ∈ L1(R), n ∈ N.

Since each f ∈ L1(R) can be identified with

[
f ∗ ϕn

ϕn

]
∈ β`(R), we may

consider L1(R) a subspace of β`(R). Theorems 3.4 and 3.5 show that the space
β`(R) is considerably larger than L1(R). Moreover, Theorem 3.5 may be used to
construct an integrable Boehmian which is not a Schwartz distribution.

Remark. The name integrable Boehmians is usually associated with the space con-

structed in [8]. Since β`(R) can be identified with a subspace of this space, we will call

elements of β`(R), integrable Boehmians.

The Fourier transform of an L1(R) function is given by

(3.1) f̂(x) =
∞∫

−∞

f(t)e−ixt dt.

The Fourier transform can be extended to the space β`(R) as follows.



Integrable Boehmians, Fourier transforms, and Poisson’s summation formula 175

Definition 3.1. Let F =

[
fn

ϕn

]
∈ β`(R). The Fourier transform of F, denoted by

F̂ , is the function defined for each x ∈ R by

(3.2) F̂ (x) = lim
n→∞

f̂n(x).

The above limit exists, and is independent of the representative. Moreover,
the Fourier transform of a Boehmian satisfies the same basic properties as the
classical Fourier transform of an L1 function (see [8]).

It is not difficult to show that F̂ is continuous on R. That is, F̂ ∈ C(R).

Moreover, as the next theorem will show, F̂ satisfies a growth condition.

Theorem 3.2. Let θ(x) be a positive increasing function such that

∞∫

1

θ(x)

x2
dx = ∞.

If F ∈ β`(R), then lim inf
x→∞

e−θ(x)|F̂ (x)| = 0.

Proof. Let F =

[
fn

ϕn

]
∈ β`(R). Thus, F ∗ ϕn = fn (n ∈ N), and hence,

(3.3) F̂ (x)ϕ̂n(x) = f̂n(x),

for all x ∈ R and n ∈ N.

Now, suppose that there exist constants ε > 0 and x0 ∈ R such that

(3.4) |F̂ (x)| ≥ εeθ(x),

for all x ≥ x0.

Thus, by (3.3) and (3.4), for each n ∈ N,

ϕ̂n(x) = O(e−θ(x)) as x→ ∞.

Since ϕn has compact support, Theorem XXII in [5] implies that ϕn ≡ 0, for all
n ∈ N.

This contradiction completes the proof of the theorem.

In the previous theorem, the growth condition for F̂ at infinity can be replaced
by an equivalent condition at negative infinity.

The proof of the following lemma is left to the reader.

Lemma 3.3. Let g ∈ C(2)(R) such that g(j) ∈ L1(R) ∩C0(R) for j = 0, 1, 2. Then

there exists f ∈ L1(R) such that f̂(x) = g(x) for all x ∈ R.
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In the above lemma, C0(R) denotes the space of all continuous functions
which vanish at infinity.

Also, a function f is in C(2)(R) provided that f is twice differentiable and
f ′′ ∈ C(R).

In the next theorem, w is a continuous real-valued function on R such that

(i) 0 = w(0) ≤ w(x + y) ≤ w(x) + w(y) for all x, y ∈ R,

(ii)
∞∫

−∞

w(x)

1 + x2
dx <∞,

(iii) w(x) ≥ a+ b ln(1 + |x|), for some real a and positive b and all x ∈ R.

Theorem 3.4. Let g ∈ C(2)(R) such that g(j)(x) = O(ew(x)) as |x| → ∞ for

j = 0, 1, 2. Then there exists F ∈ β`(R) such that F̂ (x) = g(x), x ∈ R.

Proof. By Theorem 1.4.1 in [2], there exists ψ ∈ D(R) such that
∞∫

−∞

ψ(x) dx = 1

and, for each n ∈ R, there exists a constant Mn > 0 such that

|ψ̂(x)| ≤Mne
−2nw(x), x ∈ R.

For n ∈ N, define ψn(x) = nψ(nx), x ∈ R. Then, {ψn} is a delta sequence and,
for each n ∈ N,

|ψ̂n(x)| ≤Mne
−2w(x), x ∈ R.

Now, let ϕn = ψn ∗ ψn ∗ ψn, n ∈ N. Thus, {ϕn} is a delta sequence. Moreover,
for j = 0, 1, 2 and n ∈ N,

gϕ̂n ∈ C(2)(R) and (gϕ̂n)(j) ∈ L1(R) ∩ C0(R).

Thus, by Lemma 3.3, for each n ∈ N, there exists fn ∈ L1(R) such that f̂n = gϕ̂n.
Now,

(fn ∗ ϕk)∧ = f̂nϕ̂k = (gϕ̂n)ϕ̂k = (gϕ̂k)ϕ̂n = f̂kϕ̂n = (fk ∗ ϕn)∧.

Thus, fn ∗ ϕk = fk ∗ ϕn, for all n, k ∈ N. Therefore, F =

[
fn

ϕn

]
∈ β`(R).

Moreover,

F̂ (x) = lim
n→∞

f̂n(x) = lim
n→∞

g(x)ϕ̂n(x) = g(x), x ∈ R.

A Boehmian F is said to vanish on an open interval (a, b) provided that there
exists a delta sequence {ϕn} such that F ∗ ϕn ∈ C(R), n ∈ N, and F ∗ ϕn → 0
uniformly on compact subsets of (a, b) as n → ∞. The support of F is the com-
plement of the largest open set on which F vanishes. Every Boehmian with bounded
support is an element of β`(R).

J. Burzyk [3] proved the following Paley-Wiener type theorem.

Theorem 3.5. Suppose F is a Boehmian such that suppF ⊆ [−σ, σ] for some

σ ≥ 0. Then F̂ is an entire function. Moreover,
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(i) For every ε > 0, there exists a constant Aε such that

(3.5) |F̂ (z)| < Aεe
(σ+ε)|z|

for z ∈ C, and

(ii)

(3.6)

∞∫

−∞

ln+ |F̂ (x)|

1 + x2
dx <∞.

Conversely, if an entire function g satisfies conditions (3.5) and (3.6), then it
is the Fourier transform of a Boehmian F whose support is contained in [−σ, σ].

An Inversion Theorem is given in [8]. The next theorem gives another inver-
sion formula, which has the form of the classical inversion formula for L1 functions.

Theorem 3.6. Let F ∈ β`(R). Then, F =
∞∫

−∞

eixtF̂ (t) dt.

(That is, F = δ- lim
n→∞

∫
|t|≤n

eixtF̂ (t) dt.)

Proof. Let F =

[
fn

ϕn

]
∈ β`(R). We may assume that for each n ∈ N, fn, f̂n ∈

L1(R) ∩ C(R). For, if not, notice that F =

[
fn ∗ ϕn

ϕn ∗ ϕn

]
and fn ∗ ϕn, (fn ∗ ϕn)∧ ∈

L1(R) ∩ C(R).

Now, for each n ∈ N, let

Fn(x) =
∫

|t|≤n

eixtF̂ (t) dt, x ∈ R.

Thus,

(Fn ∗ ϕk)(x) =
∫

|t|≤n

eixtF̂ (t)ϕ̂k(t) dt

=
∫

|t|≤n

eixtf̂k(t) dt, for all n, k ∈ N and x ∈ R.

Therefore, for each k,

Fn ∗ ϕk → fk uniformly as n→ ∞.

That is,
δ - lim

n→∞

∫
|t|≤ne

ixtF̂ (t) dt = F.

Remarks. (i) The delta sequences used in [8] are more general than the delta sequences
used in this paper. The space of integrable Boehmians in [8] is larger than β`(R) . It can be
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shown that if g ∈ C(2)(R), then there exists an F ∈ βL1(R) such that F̂ (x) = g(x), x ∈ R.
However, unlike the space βL1(R) in [8], each element of β`(R) has local properties such
as a support.

(ii) It would be of interest to find necessary and sufficient conditions for a given
continuous function to be the Fourier transform of some integrable Boehmian. Since
there is no nice necessary and sufficient condition which can be used to determine whether
a given continuous function (which vanishes at infinity) is the Fourier transform of an
L1(R) function, this is most likely a difficult problem.

4. PERIODIC BOEHMIANS

Let T denote the unit circle. We make no distinction between a function on
T and a 2π-periodic function on R.

In this section, we give a brief introduction to the space of periodic Boehmians
β(T ). The space β(T ) is quite large. It contains a subspace which can be identified
with the space of periodic Schwartz distributions, as well as some elements which
can be identified with a subspace of periodic hyperfunctions.

The material in this section will be needed in Section 5. For the proofs of the
theorems and for more results on β(T ), see [9,10,11].

For f ∈ L1
loc(R), let τaf(x) = f(x+ a), a ∈ R.

The translation operator τa can be extended to the space β(R).

For F =

[
fn

ϕn

]
∈ β(R), define τaF =

[
τafn

ϕn

]
, a ∈ R . It is routine to show

that

[
τafn

ϕn

]
∈ β(R).

The space of periodic Boehmians will be denoted by β(T ). That is, F ∈ β(T )
provided F ∈ β(R) and τ2πF = F .

Lemma 4.1. Let F =

[
fn

ϕn

]
∈ β(R). Then, F ∈ β(T ) if and only if fn ∈ L1(T ),

for all n ∈ N.

For f ∈ L1(T ), the kth Fourier coefficient is given by

(4.1) ck(f) =
1

2π

π∫
−π

f(x)e−ikx dx, k ∈ Z.

Definition 4.2. Let F =

[
fn

ϕn

]
∈ β(T ). The kth Fourier coefficient of F is given

by

(4.2) ck(F ) = lim
n→∞

ck(fn).

The above limit exists, and is independent of the representative.
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Theorem 4.3. Let w be a real-valued even function defined on the integers Z such

that 0 = w(0) ≤ w(n + m) ≤ w(n) + w(m) for all n,m ∈ Z and
∞∑

n=1

w(n)

n2
< ∞.

Suppose that the set of positive integers is partitioned into two disjoint sets {tn}

and {sn} such that
∞∑

n=1

1

tn
< ∞. If {ξn} is a sequence of complex numbers such

that ξ±sn
= O(ew(sn)) as n → ∞, then there exists a periodic Boehmian F such

that cn(F ) = ξn, n ∈ Z.

The next theorem is a stronger version of Theorem 3.5 in [11]. Since the
proof is similar to that of Theorem 3.5, it is omitted.

Theorem 4.4. Let θ(x) be an increasing function such that

∫ ∞

1

θ(x)

x2
dx = ∞.

Let {λn} be an increasing sequence of positive integers such that lim
n→∞

n

λn

= D > 0.

Then, for each F ∈ β(T ), lim inf
n→∞

e−θ(λn)|cλn
(F )| = 0.

By making the appropriate changes, Theorem 4.4 is also valid for a sequence
of negative integers {λn}.

In the next section, Theorem 4.4 will be used to strengthen Theorem 3.2.

Theorem 4.5. Let F ∈ β(T ). Then, F =
∞∑

k=−∞

ck(F )eikx.

(That is, F = δ- lim
n→∞

n∑
k=−n

ck(F )eikx.)

Remark. By using Theorem 4.3 it is clear that β(T ) contains a proper subspace which can

be identified with the space of periodic Schwartz distributions. Theorem 4.3 also shows

that there are Boehmians which are not hyperfunctions. Conversely, by using Theorem

4.4, we see that there are hyperfunctions which are not Boehmians.

5. THE POISSON SUMMATION FORMULA

The importance of the Poisson summation formula is well-known. It has
been found to be useful in many areas of mathematics, such as, number theory,
differential equations, and signal analysis. For a nice introduction to some applica-
tions of the Poisson summation formula, see [12].

One form of Poisson’s summation formula, for a well-behaved function f , is
given by

(5.1) 2π
∞∑

k=−∞

f(x+ 2πk) =
∞∑

k=−∞

f̂(k)eikx,
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where f̂(ξ) =
∞∫

−∞

f(x)e−iξx dx.

In this section, see Theorem 5.7, we will present a version of the Poisson

summation formula for β`(R).

An integrable function does not necessarily satisfy Poisson’s summation for-
mula (see [4]). However, recall that L1(R) can be identified with a subspace of
β`(R). Thus, Poisson’s summation formula for integrable Boehmians, Theorem
5.7, is valid for any L1(R) function.

The periodization operator # : L1(R) → L1(T ) is given by

(5.2) f#(x) =
∞∑

k=−∞

f(x+ 2πk), for f ∈ L1(R).

We will see that the mapping # can be extended onto the space β`(R) by

(5.3) F# =

[
f#

n

ϕn

]
, where F =

[
fn

ϕn

]
∈ β`(R).

Hence, # : β`(R) → β(T ).

The proof of the following lemma may be found in [1].

Lemma 5.1. Let f ∈ L1(R) and {ϕn} be a delta sequence. Then

(i) 2πcp(f
#) = f̂(p), for all p ∈ Z;

(ii) 2πcp(f
# ∗ ϕn) = f̂(p)ϕ̂n(p), for all p ∈ Z and n ∈ N.

Lemma 5.2. Let

[
fn

ϕn

]
∈ β`(R). Then,

[
f#

n

ϕn

]
∈ β(T ).

Proof. 2πcp(f
#
n ∗ ϕk) = f̂n(p)ϕ̂k(p) = (fn ∗ ϕk)∧(p) = (fk ∗ ϕn)∧(p) = f̂k(p)ϕ̂n(p)

= 2πcp(f
#
k ∗ ϕn). Thus, f#

n ∗ ϕk = f#
k ∗ ϕn, for all k, n ∈ N.

Therefore,

[
f#

n

ϕn

]
∈ β(T ).

Since the proof of the following lemma is similar to the proof of Lemma 5.2,
it is omitted.

Lemma 5.3. Let

[
fn

ϕn

]
,

[
gn

ψn

]
∈ β`(R) such that

[
fn

ϕn

]
=

[
gn

ψn

]
. Then,

[
f#

n

ϕn

]
=

[
g#

n

ψn

]
.

By Lemmas 5.2 and 5.3, the mapping # is well-defined and maps β`(R) into
β(T ).

Lemma 5.4. Let F ∈ β`(R). Then, 2πck(F#) = F̂ (k), k ∈ Z.
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Proof. Let F =

[
fn

ϕn

]
∈ β`(R). Then,

2πck(F#) = 2π limn→∞ ck(f#
n ) = limn→∞ f̂n(k) = F̂ (k).

By applying Lemma 5.4 to Theorem 4.4, an improvement of Theorem 3.2 is
obtained.

Theorem 5.5. Let θ(x) be an increasing function such that

∞∫

1

θ(x)

x2
dx = ∞.

Let {λn} be an increasing sequence of positive integers such that lim
n→∞

n

λn

= D > 0.

Then, for each F ∈ β`(R), lim inf
n→∞

e−θ(λn)|F̂ (λn)| = 0.

Lemma 5.6. Let F ∈ β`(R). Then, F# =
∞∑

k=−∞

F (x+ 2πk).

(That is, F# = δ- lim
n→∞

∑
|k|≤n

τ2πkF .)

Proof. Let F =

[
fn

ϕn

]
∈ β`(R). Then, for each p ∈ N,

ϕp ∗
∑

|k|≤n

τ2πkF =
∑

|k|≤n

τ2πkfp → f#
p in L1

loc(R) as n → ∞ (see [1], Lemma 1).

That is, δ- lim
n→∞

∑
|k|≤n

τ2πkF = F#.

The following is the Poisson summation formula for integrable Boehmians.

Theorem 5.7. Let F ∈ β`(R). Then,

(5.4) 2π
∞∑

k=−∞

F (x+ 2πk) =
∞∑

k=−∞

F̂ (k)eikx.

Proof.

∞∑
k=−∞

F̂ (k)eikx =
∞∑

k=−∞

2πck(F#)eikx = 2πF# = 2π
∞∑

k=−∞

F (x+ 2πk).

Corollary 5.8. Let f ∈ L1(R) and {ϕn} be a delta sequence. Then,

(5.5) 2π
∞∑

k=−∞

f(x+ 2πk) = lim
n→∞

∞∑
k=−∞

ϕ̂n(k)f̂(k)eikx

in L1
loc(R).

It can be shown that if δ- lim
n→∞

Fn = F and Fn = 0 on (a, b) for all n ∈ N, then

F = 0 on (a, b). Combining this with Poisson’s summation formula and Theorem
3.5, we obtain the following.

Let g be an entire function satisfying the following conditions.
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(i) For each ε > 0, there exists a constant Aε such that |g(z)| < Aεe
(σ+ε)|z|, for

all z ∈ C (for some 0 ≤ σ < π).

(ii)
∞∫

−∞

ln+ |g(x)|

1 + x2
dx <∞.

Then,
∞∑

n=−∞
g(n)einx ∈ β(T ). Moreover,

∞∑
n=−∞

g(n)einx = 0 on σ < |x| <

2π − σ.

For example, the Mittag-Leffler function Eα(z) =
∞∑

n=0

zn

Γ(αn+ 1)
(where

α > 0 and Γ(x) =
∞∫

0

e−ttx−1 dt) is an entire function of order 1/α.

Thus, for α > 1,
∞∑

n=−∞
Eα(n)einx ∈ β(T ) and

∞∑
n=−∞

Eα(n)einx = 0 on 0 <

|x| < 2π.
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