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SIXTH ORDER DIFFERENTIAL OPERATORS WITH

EIGENVALUE DEPENDENT BOUNDARY CONDITIONS

Manfred Möller, Bertin Zinsou

We consider eigenvalue problems for sixth-order ordinary differential equa-
tions. Such differential equations occur in mathematical models of vibrations
of curved arches. With suitably chosen eigenvalue dependent boundary con-
ditions, the problem is realized by a quadratic operator pencil. It is shown
that the operators in this pencil are self-adjoint, and that the spectrum of the
pencil consists of eigenvalues of finite multiplicity in the closed upper half-
plane, except for finitely many eigenvalues on the negative imaginary axis.

1. INTRODUCTION

The spectral theory of higher order ordinary linear differential operators,
in particular those with eigenvalue parameter dependent boundary conditions, is
much less investigated and understood than the spectral theory of Sturm-Liouville
operators. Like the spectral theory of Sturm-Liouville operators, (quasi-)regular
and singular problems of higher order differential operators are distinguished by
their spectral properties. Amongst known fundamental results are characteriza-
tions of symmetry of the minimal operator for nth order differential expressions,
see [20, 32]. General characterizations of self-adjoint boundary conditions have
been obtained in [30, 31]. Various aspects of higher order differential operators
whose boundary conditions depend on the eigenvalue parameter, including spectral
asymptotics and basis properties, have been investigated in [10, 11, 17, 28].

In order to motivate the subject of this paper we recall that the generalized
Regge problem is realised by a second order differential operator which depends
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quadratically on the eigenvalue parameter and which has eigenvalue parameter de-
pendent boundary conditions, see [27]. The particular feature of the Regge problem
is that the coefficient operators of the corresponding quadratic operator pencil are
self-adjoint, and it is shown that this gives some a priori knowledge about the lo-
cation of the spectrum. In [19] this approach has been extended to a fourth order
differential equation describing small transversal vibrations of a homogeneous beam
compressed or stretched by a force g. Separation of variables leads to an ordinary
fourth order differential equation with eigenvalue parameter dependent boundary
conditions, where the differential equation depends quadratically on the eigenvalue
parameter. For the same differential operator as in [19], we have investigated a
more general class of eigenvalue parameter dependent boundary conditions. Nec-
essary and sufficient conditions for the associated operator pencil to consist of self-
adjoint operators have been obtained in [21], while in [22, 23] we have continued
the work in the direction of [19] to find the asymptotic distribution of eigenval-
ues for boundary conditions which lead to self-adjoint operator representations. In
this paper we start to extend this investigation to a corresponding problem for a
sixth order differential equation. In a forthcoming paper we will investigate the
asymptotic distribution of the eigenvalues of these operator pencils.

The general spectral theory of sixth-order differential operators is (almost)
unknown. In this paper, we will therefore investigate the location of the spectrum of
quadratic self-adjoint sixth-order differential operator pencils. Numerical methods
and other techniques for the investigation of sixth-order boundary value problems
can be found in [2, 5, 7, 15, 24, 25].

Before introducing our operator pencil we will briefly discuss physical config-
urations which are described by sixth order linear differential equations. A quite
extensive literature deals with curved arches. The corresponding mathematical
models give a sixth order differential equation if all but one independent variables
are eliminated, see e. g. Wuest [33], Waltking [29], Auricelli and De Rosa

[1]. Here, one is often interested in the stability of the underlying system, which,
in general, is determined by the location of the smallest eigenvalue of the differen-
tial equation. We observe that, as above, sixth order differential equations occur
when one eliminates two of the three unknown functions in systems of second or-
der differential equations. But in particular for numerical methods it might be
more convenient to use systems of differential equations, first order systems as well
as higher order systems. For this and numerical results, we refer the reader to
[8, 12, 13, 14, 26] and related publications.

Wuest [33, page 266] derived a model for beams and pipes whose central axis
is a circular arc between the angles ϕ = 0 and ϕ = ϕ∗. The resulting differential
equation for the tangential movement v of the pipe is

∂6v

∂ϕ6
+ 2

∂4v

∂ϕ4
+

∂2v

∂ϕ2
= c

∂2

∂t2

(
−

∂2v

∂ϕ2
+ v

)

with a constant c depending on the geometry and the physical properties of the
configuration. The end at ϕ = 0 is clamped, whereas the other end is free. Using



Sixth order differential operators 3

separation of variables, both ends give three boundary conditions each, where one
of the boundary conditions at the free end depends quadratically on the eigenvalue
parameter. The same differential equation has been considered by Auricello and
De Rosa in [1, page 435], where also hinged end-points are considered. Separation
of variables leads to a sixth order ordinary differential equation

y(6) + 2y(4) + y′′ = −cλ2(−y′′ + y),

and the boundary conditions at a fixed end are such that y, y′ and y′′ are zero
there, see [33, page 267] and [1, page 437], whereas the boundary conditions at
the hinged end are such that y, y′ and y′ + y′′′ are zero, see [1, page 437]. A more
general configuration can lead to a differential equation where the eigenvalue occurs
as λ2 and as λ4 or where the λ-dependent part contains a fourth order derivative,
see Federhofer [4, page 279] and Waltking [29, page 435].

Keeping in mind that in [19] the hinged undamped condition y′′(a) = 0 leads
to the boundary condition y′′(a)+iαλy′(a) = 0, we will replace the hinged boundary
condition y′′′(a) = 0 by the boundary condition y′′′(a) + iαλy′′(a) = 0. We can
now describe the problem which will be considered in this paper. On the interval
[0, a], the boundary eigenvalue problem is defined by the differential equation

−y(6) + (g2y
′′)′′ − (g1y

′)′ + g0y = λ2
(
(h2y

′′)′′ − (h1y
′)′ + h0y

)
(1)

and the boundary conditions

y(0) = 0, y′(0) = 0, y′′(0) = 0,(2)

y(a) = 0, y′(a) = 0, y′′′(a) + iαλy′′(a) = 0,(3)

where gj , hj ∈ Cj [0, a] are real-valued with hj ≥ 0 and h0 + h1 + h2 > 0, a > 0 and
α > 0.

We associate a quadratic operator pencil

(4) L(λ, α) = λ2M − iαλK − A

in the space L2(0, a) ⊕ C with this problem, where K is the operator with domain
D(K) = L2(0, a) ⊕ C given by

(5) K =

(
0 0
0 1

)
.

The operator A acting in L2(0, a) ⊕ C with domain

D(A) =
{

ỹ =
(

y

y′′(a)

)
:y ∈ W

2
6 (0, a), y(0) = y

′(0) = y
′′(0) = y(a) = y

′(a) = 0
}

,(6)

is given by

(7) Aỹ =

(
−y(6) + (g2y

′′)′′ − (g1y
′)′ + g0y

y′′′(a)

)
for ỹ ∈ D(A),
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where W 2
6 (0, a) is the Sobolev space of order 6 associated with L2(0, a). Finally, M

will be the Friedrichs extension of the operator M0 which is defined by D(M0) =
D(A) and

(8) M0ỹ =

(
(h2y

′′)′′ − (h1y
′)′ + h0y

0

)
for ỹ ∈ D(A),

see Corollary 2.4.

We are going to use that L2(0, a) ⊕ C is a Hilbert space with respect to the
inner product

〈ṽ, w̃〉 = (v, w) + cd =

∫ a

0

v(x)w(x) dx + cd, ṽ =

(
v

c

)
, w̃ =

(
w

d

)
∈ L2(0, a).

The domain of the operator pencil L(λ, α) is D(L(λ, α)) = D(A), and for ỹ ∈ D(A),
L(λ, α)ỹ = 0 holds if and only if the differential equation (1) and the boundary
conditions (2) and (3) hold. Hence the operator pencil (4) describes the eigenvalue
problem (1)-(3).

We show in Section 2 that the operator A is self-adjoint and that the operator
M0 has a self-adjoint extension. In Section 3 we show that the spectrum of the
pencil L(·, α) consists of isolated eigenvalues of finite multiplicity. The eigenvalues
are located in the closed upper half-plane, with the possible exception of finitely
many eigenvalues on the negative imaginary axis, inside an interval [0,−iν1/2],
where ν is independent of α.

2. SELF-ADJOINTNESS OF THE PENCIL LLL

We are going to show that L(λ, α) is a self-adjoint operator pencil, that is, the
operators A, K, M are self-adjoint. Clearly, K is a self-adjoint bounded operator
in L2(0, a) ⊕ C.

Proposition 2.1. The operator A is symmetric.

Proof. We first show that A is densely defined. Let w̃ =
(
w

c

)
∈ L2(0, a) ⊕ C such

that 〈ỹ, w̃〉 = 0 for all ỹ ∈ D(A), i. e.,

∫ a

0

y(x)w(x) dx + y′′(a)c = 0.

If y ∈ C∞
0 (0, a), then y′′(a) = 0 and ỹ =

(
y

0

)
∈ D(A), where

∫ a

0

y(x)w(x) dx = 0 for all y ∈ C∞

0 (0, a).

It follows that w = 0.
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The polynomial y(x) = x3(x − a)2 satisfies y(0) = y′(0) = y′′(0) = y(a) =
y′(a) = 0 and y′′(a) = 2a3 6= 0. Hence

ỹ =

(
y

y′′(a)

)
∈ D(A).

Since w = 0, it follows that 0 = 〈ỹ, w̃〉 = y′′(a)c = 2a3c and therefore c = 0,
showing that w̃ = 0. Hence D(A)⊥ = {0}, that is, A is densely defined.

For ỹ, z̃ ∈ D(A) we have

〈Aỹ, z̃〉 = −

∫ a

0

y(6)(x)z(x) dx +

∫ a

0

(g2y
′′)′′(x)z(x) dx

−

∫ a

0

(g1y
′)′(x)z(x) dx +

∫ a

0

(g0y)(x)z(x) dx + y′′′(a)z′′(a).

Integrating by parts and observing the boundary conditions satisfied by elements
in D(A), it follows that

−

∫ a

0

y(6)(x)z(x) dx =

∫ a

0

y′′′(x)z′′′(x) dx − y′′′(a)z′′(a),

∫ a

0

(g2y
′′)′′(x)z(x) dx =

∫ a

0

g2(x)y′′(x)z′′(x) dx,

−

∫ a

0

(g1y
′)′(x)z(x) dx =

∫ a

0

g1(x)y′(x)z′(x) dx.

Hence

〈Aỹ, z̃〉 =

∫ a

0

y′′′(x)z′′′(x) dx +

∫ a

0

g2(x)y′′(x)z′′(x) dx(9)

+

∫ a

0

g1(x)y′(x)z′(x) dx +

∫ a

0

g0(x)y(x)z(x) dx,

which shows that

〈Aỹ, z̃〉 = 〈Az̃, ỹ〉 = 〈ỹ, Az̃〉.

Since A is densely defined this shows that A is symmetric.

Theorem 2.2. The operator A is self-adjoint.

Proof. Since the operator A is symmetric, it is sufficient to show that its deficiency
indices are zero, that is, that A − µI is surjective for all µ ∈ C \ R. To show this,
we will consider the operators B0 and B3 in L2(0, a) defined by

D(B0) =
{
y ∈ W 2

6 (0, a) : y(0) = y′(0) = y′′(0) = y(a) = y′(a) = 0
}

,

D(B3) = {y ∈ D(B0) : y′′′(a) = 0} ,

B0y = −y(6) + (g2y
′′)′′ − (g1y

′)′ + g0y for y ∈ D(B0),

B3y = B0y for y ∈ D(B3).
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It is well-known that the operator B3 is self-adjoint, see e. g. [20, Theorem 2.4].
Hence the operator B3 − µI is bijective. Let f ∈ L2(0, a) and c ∈ C. Then there
is u ∈ D(B3) such that (B3 − µI)u = f . Also, since B0 is a proper extension of
B3, B0 − µI is not injective, so that there is a nontrivial v ∈ D(B0) such that
(B0 −µI)v = 0. Because B3 −µI is injective, v 6∈ D(B3), which implies v′′′(a) 6= 0.
Then y = u + γv satisfies (B0 − µI)y = f for all γ ∈ C and therefore

(A − µI)ỹ =

(
f

γv′′′(a)

)
=

(
f

c

)

for a suitable choice of γ. Hence we have shown that A − µI is surjective for all
µ ∈ C \ R, and the self-adjointness of the symmetric operator A follows.

Proposition 2.3. The operator M0 is symmetric and positive.

Proof. The symmetry follows as in the proof of Proposition 2.1, and in particular

〈M0ỹ, ỹ〉 =

∫ a

0

h2(x)|y′′(x)|2 dx +

∫ a

0

h1(x)|y′(x)|2 dx +

∫ a

0

h0(x)|y(x)|2 dx(10)

for ỹ =
(

y

y′′(a)

)
∈ D(M0) shows that M0 ≥ 0. Assume there is ỹ 6= 0 such that

M0ỹ = 0. Then there is a largest b ∈ [0, a) such that y = 0 on [0, b]. Since
h0 + h1 + h2 > 0, it follows from 〈M0ỹ, ỹ〉 = 0 that at least one of y, y′ or y′′ must
be zero near b, and y(b) = y′(b) = y′′(b) = 0 then gives the contradiction y = 0
near b.

Since M0 ≥ 0, its Friedrichs extension M is defined, see e. g. [9, Section
VI.3], and we have

Corollary 2.4. The operator M is self-adjoint and non-negative.

We observe that the operator M is more general than the corresponding
operator in [19, 21], where M = I − K.

3. SPECTRAL PROPERTIES OF THE OPERATOR PENCIL LLL

Proposition 3.5. For all α ≥ 0, the operator pencil L(·, α) is a Fredholm val-

ued operator function with index 0. The spectrum of the pencil L(·, α) consists of

discrete eigenvalues of finite multiplicities and all eigenvalues of L(·, α) lie in the

closed upper half-plane and on the imaginary axis and are symmetric with respect

to the imaginary axis.

Proof. As in [19, Section 3] we can argue that for all λ ∈ C, L(λ, α) is a relatively
compact perturbation of L(0, 0), where L(0, 0) is well known to be a Fredholm
operator. The statement on the location of the spectrum now follows as in [19,
Lemma 3.1].
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The proofs of the two following lemmas are similar to the proofs of [19,
Lemma 3.2 and Lemma 3.3].

Lemma 3.6. All nonzero real eigenvalues of L(·, α), α > 0, (if any) are semi-

simple, i.e., the corresponding eigenvectors do not possess associated vectors. All

real eigenvalues of L(·, α), α > 0, are independent of α.

Lemma 3.7. Let λ = −iτ , τ > 0, be an eigenvalue of L(·, α), α ≥ 0. Then λ is

semi-simple.

Proposition 3.8. Let λ be an eigenvalue of L(·, α), α ≥ 0. Then the geometric

multiplicity of λ is at most 3.

Proof. Let N(L(λ, α)) be the null space of the operator L(λ, α) and define the op-
erator fλ : N(L(λ, α)) → C3 by fλy = (y(3)(0), y(4)(0), y(5)(0))T. If y ∈ N(L(λ, α))
and fλ(y) = 0, then y(j)(0) = 0 for j = 0, . . . , 5. Hence the function y = 0 is the
unique solution of an initial value problem, which shows that fλ is injective. Hence
the dimension of N(L(λ, α)) is at most 3.

Remark 3.9. Writing the boundary conditions (2), (3) in the form Bj(λ)y(λ, ·) = 0 and

letting yk(λ, ·) be the solutions of (1) satisfying y
(`)
k (λ, 0) = δk,` for k, ` = 0, . . . , 5,

the characteristic determinant m(λ, α) of (1)-(3) is the determinant of the given ma-
trix (Bj(λ)yk(λ, ·))5j,k=0. The zeros of m(·, α) are the eigenvalues of (1)-(3), see e. g. [18,
Section 6.3]. It is well-known that the functions yk depend analytically on λ and α.
Therefore, for each α0 ∈ R an eigenvalue λ(α0) of (1)-(3) leads to a continuous eigenvalue
branch λ(α) for α near α0, see e. g. [3, Appendix A 5.4, Theorem 3], [6, Section A.1,
Lemma A.1.3] or [16, Section 45, Corollary, p. 303]. In the following, we will always
choose such continuous branches. If we have multiple eigenvalues, there is some ambigu-
ity. However, if the eigenvalue λ(α0) is semi-simple, say of multiplicity n, then the space
of eigenfunctions satisfying y′′(a) = 0 has dimension n− 1 or n. But these eigenfunctions
are then eigenfunctions for all α, so that there are n−1 or n constant eigenvalue branches
λ = λ(α0), and the remaining eigenvalue branch in case n − 1 would depend analytically
on α since it is the unique solution of λ 7→ m(λ,α)(λ − λ(α0))

−n+1 = 0 near λ(α0).

Lemma 3.10. 1. Let λ(α) = −iτ , τ > 0, be an eigenvalue of L(·, α), α ≥ 0. Then

Re λ̇(α) = 0 and Im λ̇(α) ≥ 0 for all α ≥ 0; here · means derivative with respect

to α.

2. If 0 is an eigenvalue of L(·, α) for some α ≥ 0, then it is an eigenvalue for all

α ≥ 0, its geometric multiplicity m ≤ 3 is the same for all α ≥ 0, m = dim N(A),
whereas its algebraic multiplicity p is the same for all α > 0 and satisfies m ≤ p ≤
min{2m, m + 2}.

Proof. 1. If λ(α) = −iτ is an eigenvalue of L(·, α), α ≥ 0 with corresponding
eigenvector Y , then

(11) 〈L(−iτ, α)Y, Y 〉 = τ2〈MY, Y 〉 + τα〈KY, Y 〉 + 〈AY, Y 〉 = 0.

Since the eigenvalue λ(α) is semi-simple by Lemma 3.7, it depends analytically
on α by Remark 3.9, and the eigenvector Y corresponding to λ can be chosen to
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depend analytically on α. Differentiating (11) with respect to α we obtain

〈L(−iτ, α)Y, Ẏ 〉 + 〈L(−iτ, α)Ẏ , Y 〉 − 2iτ λ̇〈MY, Y 〉 − iαλ̇〈KY, Y 〉 − τ 〈KY,Y 〉 = 0.(12)

Obviously,

〈L(−iτ, α)Y, Ẏ 〉 = 0, 〈L(−iτ, α)Ẏ , Y 〉 = 〈Ẏ , L(−iτ, α)Y 〉 = 0.

Substituting these equations into (12) we obtain

(13)
(
2τ〈MY, Y 〉 + α〈KY, Y 〉

)
λ̇ = iτ〈KY, Y 〉.

Since τ > 0, α ≥ 0, M |D(A) > 0, and K ≥ 0, it follows that

(14) λ̇ =
iτ〈KY, Y 〉

2τ〈MY, Y 〉 + α〈KY, Y 〉
,

which completes the proof of statement 1.

2. Since L(0, α) = L(0, 0) = −A is independent of α, it follows that if 0 is an
eigenvalue for some α ≥ 0, then it is eigenvalue for all α ≥ 0; also the statement
about the geometric multiplicity is obvious. On the other hand, since L(·, 0) is a
function of λ2, each eigenvector of L(·, 0) corresponding to the eigenvalue 0 has a
chain with at least one associated vector zero. Assume there is an eigenvector Y0

corresponding to the eigenvalue 0 of L(·, 0) which has a chain of associated vectors
Y1, Y2, i. e.,

(15) −AY0 = 0, −AY1 = 0, MY0 − AY2 = 0.

Taking the scalar product with Y0 in the last equation and observing the first
equation and the self-adjointness of A, we infer

(16) 0 = 〈MY0, Y0〉 − 〈AY2, Y0〉 = 〈MY0, Y0〉,

which gives Y0 = 0 since M |D(A(U)) > 0; a contradiction as Y0 is an eigenvector.
The assertions for α = 0 are proved.

Now let α > 0. If 0 is an eigenvalue of L(·, α) with an eigenvector Y0 which
has an associated vector Y1, then

(17) −AY0 = 0, −iαKY0 − AY1 = 0.

It follows that

(18) 0 = −iα〈KY0, Y0〉 − 〈AY1, Y0〉 = −iα〈KY0, Y0〉,

and K ≥ 0 implies

(19) KY0 = 0,
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which gives

0 = KY0 =

(
0 0
0 1

) (
y0

y′′
0 (a)

)
= y′′

0 (a).

This has two consequences: firstly, Y0 and Y1 are independent of α, and secondly,
y0 satisfies y0(a) = y′

0(a) = y′′
0 (a) = y′′′

0 (a) = 0. Thus at most two linearly inde-
pendent eigenvectors can have an associated vector. Assume such an eigenvector
Y0 has a chain Y1, Y2 of associated vectors, i. e., (17) and

(20) MY0 − iαKY1 − AY2 = 0

hold. This leads to

0 = 〈MY0, Y0〉 − iα〈KY1, Y0〉 − 〈AY2, Y0〉(21)

= 〈MY0, Y0〉 − iα〈Y1, KY0〉 − 〈Y2, AY0〉.

By (17) and (19) we thus arrive at the contradiction (MY0, Y0) = 0. This completes
the proof of the assertions for α > 0.

Lemma 3.11. Let V = {y ∈ W 2
3 (0, a) : y(0) = y′(0) = y′′(0) = y(a) = y′(a) = 0}.

For ν ≥ 0 and y ∈ V define

(22) κ(ν, y) =

2∑

j=0

∫ a

0

gj(x)|y(j)(x)|2 dx + ν

2∑

j=0

∫ a

0

hj(x)|y(j)(x)|2 dx.

Then there exists ν ≥ 0 such that

a∫
0

|y′′′(x)|2 dx + κ(ν, y) ≥ 0 for all y ∈ V .

Proof. Assume the statement is false. Then there is a sequence (yn) in V such
that

(23)

∫ a

0

|y′′′

n (x)|2 dx + κ(n, yn) < 0.

We may choose yn such that

(24)

3∑

j=0

∫ a

0

|y(j)
n (x)|2 dx = 1.

Since the embedding W 2
3 (0, a) ↪→ C2[0, a] is compact, see e. g. [18, Lemma

2.4.1], we may assume without loss of generality that (yn) converges to some y ∈
C2[0, a]. The inequality (23) implies that κ(n, yn) < 0, so that

(25)
2∑

j=0

∫ a

0

hj(x)|y(j)(x)|2 dx = lim
n→∞

2∑

j=0

∫ a

0

hj(x)|y(j)
n (x)|2 dx = 0.



10 Manfred Möller, Bertin Zinsou

For j = 0, 1, 2 let Uj = {x ∈ [0, a] : hj(x) > 0}. From (25) we conclude that
y(j)|Uj

= 0 a. e. The openness of Uj and the continuity of y(j) imply that y(j) = 0

on Uj. The continuity of h0, h1, h2, h0 +h1 +h2 > 0, and a compactness argument
give the existence of numbers 0 = a0 < a1 < · · · < an = a and jk ∈ {0, 1, 2} for
k = 1, . . . , n such that [ak−1, ak] ⊂ Ujk

for these k. By the above, y(jk) = 0 on
[ak−1, ak], and an easy induction argument, starting with y(0) = y′(0) = 0, shows
that y = 0 on all of these intervals, so that y = 0 on [0, a].

From (23) it follows that

∫ a

0

|y′′′

n (x)|2 dx +

2∑

j=0

∫ a

0

gj(x)|y(j)
n (x)|2 dx <

∫ a

0

|y′′′

n (x)|2 dx + κ(ν, yn) < 0,

and therefore

lim sup
n→∞

∫ a

0

|y′′′

n (x)|2 dx = 0,

whereas (24) would give

lim
n→∞

∫ a

0

|y′′′

n (x)|2 dx = 1.

This contradiction completes the proof.

Theorem 3.12. The operator pencil L(·, α) has at most finitely many eigenvalues

on the negative imaginary axis, their total multiplicity does not exceed the corre-

sponding total multiplicity for α = 0, and the spectrum of L(·, α) on the negative

imaginary axis lies in [0,−iν1/2] for all α ≥ 0, where the number ν is as in Lemma

3.11.

Proof. In view of (9) and (10),

〈−L(−iτ, 0)ỹ, ỹ〉 =

∫ a

0

|y′′′(x)|2 dx + κ(τ2, y) >

∫ a

0

|y′′′(x)|2 dx + κ(ν, y) ≥ 0

for all y ∈ D(L) \ {0} and τ2 > ν, where we have used that M |D(L) > 0. Hence
L(·, 0) has no eigenvalues −iτ with τ2 > ν. This proves the statement for α = 0,
and the statement for α > 0 follows from Lemma 3.10.
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20. M. Möller, A. Zettl: Symmetric Differential Operators and their Friedrichs Extension.
J. Differential Equations, 115 (1995), 50–69.
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