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TRAVELING WAVE SOLUTIONS OF AN

ORDINARY-PARABOLIC SYSTEM IN R
2
AND A

2D-STRIP

Yanling Tian, Chufen Wu, Zhengrong Liu

We investigate a prey-predator model, which we describe by an ordinary-
parabolic system. We obtain four types of wave solutions of this system,
which are connecting different equilibria. To establish the existence of four
types of traveling wave solutions with double wave speeds, we introduce a new
approach to constructing monotonous iteration schemes. Moreover, by using
spreading speeds, we establish the non-existence of traveling wave solutions.
Our results provide insight into the dynamics of this model system.

1. INTRODUCTION

One of the dominant themes in both ecology and mathematical ecology is the
dynamic relationship between predators and their prey due to its universal existence
and importance in population dynamics. (see [3, 7, 8, 9, 11, 13, 15]). Taking
into consideration the fact that the natural enemies are not completely dependent
on the prey, we study a diffusive prey-predator model with modified Leslie-Gower
and Holling II schemes which was proposed in [13], and the corresponding ODE,
proposed by Aziz in [3] and considered by Nindjin in [8, 9]. If the prey moves
slower than the predator, we can regard the diffusive coefficient of the prey as 0.
Thus we consider an ordinary-parabolic system as follows.

∂u

∂t
= u

(

1− u− β1w

u+ k1

)

, t > 0, x ∈ R2,

∂w

∂t
= D∆w + αw

(

1− β2w

u+ k2

)

, t > 0, x ∈ R2,

(1)
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where D,α, β1, β2, k1, k2 are positive constants, u = u(t,x), w = w(t,x), x =
(x1, x2), refer to [13].

Obviously, (0, 0), (1, 0), (0, k2/β2) are the three steady states of (1). The fol-
lowing proposition (see [8, 13]) guarantees the existence, non-existence and unique-
ness of the positive constant steady state.

Proposition 1. System (1) has a unique interior equilibrium E1 = (u∗, w∗) (i.e
u∗ > 0, w∗ > 0) if the following condition holds

k2
β2

<
k1
β1
,(2)

where u∗, w∗ are given by u∗ =
1

2β2

[

− (β1 − β2 + β2k1) + ∆1/2
]

, w∗ =
u∗ + k2

β2
,

and ∆ = (β1 − β2 + β2k1)
2 − 4β2(β1k2 − β2k1).

System (1) has no interior equilibrium if one of the following conditions is

satisfied.

(3) (i) k1 ≥ 1 and
k1
β1

<
k2
β2

; (ii) k1 < 1 and

(

1 + k1
2

)2

<
β1k2
β2

.

Moreover, if the prey and the predator live in a 2D-strip, we also study the
following system

∂u

∂t
= u

(

1− u− β1w

u+ k1

)

, t > 0, x ∈ R, y ∈ (−L,L),

∂w

∂t
= D∆w + αw

(

1− β2w

u+ k2

)

, t > 0, x ∈ R, y ∈ (−L,L),

∂w

∂y
= 0, t > 0, x ∈ R, y ∈ {−L,L}.

(4)

Proposition 1 is valid for system (4).

Since there are four equilibria for the models, there are multiple spreading
patterns for those models. We study these patterns by investigating the traveling
wave solutions connecting different equilibria. We also refer the reader to many
important results on the topic, see [1, 2, 4, 5, 6, 7, 12, 14, 16, 17, 18]. Many of
them obtain the existence and the minimal wave speed of the traveling wave solution
when the considered dynamics are monotonous. Clearly, the prey-predator model
is not a monotonous dynamic, so the results mentioned can not be applied to our
system. In [4], the system was discussed without quasi-monotonicity by using phase
plane analysis method, which is more complicated. Motivated by [10], we analyze
the model (1) in R2 and a 2D strip by using the weak coupled upper-lower solution
method and the crossing iteration method, which are different from [4, 17, 18].
First, we establish the existence and non-existence of four types of wave solutions
with double speeds for system (1) in R2, connecting different equilibria, to describe
multiple invasion processes of the model. The term ”double speeds” here means
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that the wave solutions of the prey and the predator have different speeds. Second,
we obtain two categories of the wave solutions for (4). One is independent of y,
which can be obtained in a similar way for (1) in R2 whereas the second category
is dependent on y. Regarding the wave system of (4) as an elliptic system, we
develop the weak upper and weak lower solutions method proposed by Wang in
[15] to obtain the existence of the second category wave solution by using iterative
schemes. Moreover, the minimal wave speeds are also investigated in our paper.
Thus, the results and the methods in our paper are new for the prey-predator
system. In addition, the methods in our paper can be applied to more generalized
prey-predator systems.

Our paper is organized as follows. The existence and the non-existence of four
types of traveling wave solutions in R2 and a 2D-strip are established in sections 2
and 3, respectively. We point out that the traveling wave solutions in a 2D strip are
different from those in R2, and we provide a more detailed explanation in section
3. Our results reveal multiple invasion patterns of the system.

A well known result, first introduced in [2], is as follows.

Lemma 1. Let d̂ ≥ 0, consider the system

∂w

∂t
= D∆w + αw

(

1− β2w

d̂+ k2

)

, t > 0, x ∈ R,

w(0, x) = w0(x), x ∈ R,

(5)

then the following statements are valid :

(i) lim inf
t→+∞,|x|<ct

w(t, x) =
d̂+ k2
β2

for each 0 < c < 2
√
Dα if w0(x) ≥ 0, w0(x) 6≡ 0;

(ii) lim inf
t→+∞,|x|>ct

w(t, x) = 0

for each c > 2
√
Dα if w0(x) has a compact support set.

2. TRAVELING WAVE SOLUTIONS AND MINIMAL WAVE
SPEEDS IN R2

We observe traveling wave solutions of (1) in the form

(6) (u,w) = (φc11 , φ
c2
2 ), φcii (t, x) = pi(e1x1 + e2x2 + cit), i = 1, 2,

where (e1, e2) is the unit vector in R2. We discuss four types of such solutions.
Solutions of the form (6) that connect (0, 0) with (u∗, w∗) will be referred to as
being type I solutions, those that connect (1, 0) with (u∗, w∗) - type II, solutions
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that connect (0, k2/β2) with (u∗, w∗) - type III and finally, those that connect (1, 0)
with (0, k2/β2) will be type IV.

For convenience, in the following we write φi(t, x) instead of φcii (t, x). With

si = (e1, e2)
(

x1

x2

)

+ cit, φi(t, x) = pi(si) = pi(e1x1 + e2x2 + cit) = ψi(t), we have

that

∂φi
∂t

= ci
dpi
dsi

=
dψi
dt

,
∂2φi
∂x21

=
e21
c2i

d2ψi
dt2

,
∂2φi
∂x22

=
e22
c2i

d2ψi
dt2

.

By substitution into (1), we obtain the following wave system of (1)

− ψ′
1(t) + ψ1(t)

(

1− ψ1(t)−
β1ψ2(t)

ψ1(t) + k1

)

= 0,

D

c 2
2

ψ′′
2 (t)− ψ′

2(t) + αψ2(t)

(

1− β2ψ2(t)

ψ1(t) + k2

)

= 0,

(7)

Thus the four types of wave solutions corresponding to (7) can be defined in
a similar way as for (1), as positive solutions of (7) that connect (0, 0) with (u∗, w∗)
(type I), (1, 0) with (u∗, w∗) (type II), (0, k2/β2) with (u∗, w∗) (type III) or (1, 0)
with (0, k2/β2) (type IV).

In what follows, we seek the solutions of (7) with four types of boundary
conditions using iteration method and weak coupled upper and lower solutions.

2.1 Weak coupled upper and lower solutions of (7)

The definition of the weak coupled upper and lower solutions of (7) is given
as follows.

Definition 1. Let

Λ := {ψ : R → R},

where ψ′ and ψ′′ exist and are essentially bounded for all t ∈ R\{Ti : i = 1, . . . ,m}}.
Suppose that ψ̄i, ψi ∈ Λ, i = 1, 2. Two pairs of continuous functions, (ψ̄1, ψ̄2) and

(ψ
1
, ψ

2
), are called weak coupled upper and lower solutions of (7) if they satisfy

− ψ̄′
1 + ψ̄1

(

1− ψ̄1 −
β1ψ2

ψ̄1 + k1

)

≤ 0, t ∈ R \ {Ti : i = 1, . . . ,m},

− ψ′

1
+ ψ

1

(

1− ψ
1
− β1ψ̄2

ψ
1
+ k1

)

≥ 0, t ∈ R \ {Ti : i = 1, . . . ,m},(8)

D

c22
ψ̄′′
2 − ψ̄′

2 + αψ̄2

(

1− β2ψ̄2

ψ̄1 + k2

)

≤ 0, t ∈ R \ {Ti : i = 1, . . . ,m}, ψ̄′
2(t

+) ≤ ψ̄′
2(t

−),

D

c22
ψ′′

2
− ψ′

2
+ αψ

2

(

1−
β2ψ2

ψ
1
+ k2

)

≥ 0, t ∈ R \ {Ti : i = 1, . . . ,m}, ψ′

2
(t+) ≥ ψ′

2
(t−).
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Next, we construct the upper and lower solutions of (7). Define

φ̄1 =

{

u∗(1 + ℓ̂1e
−st), t > 0,

u∗(1 + ℓ̂1)e
t, t ≤ 0,

φ̄2 =

{

w∗(1 + ℓ̂2e
−st), t > 0,

w∗(1 + ℓ̂2)e
ζ̄1t, t ≤ 0,

φ
1
=

{

u∗(1− ℓ1e
−st), t > 0,

u∗(1− ℓ1)e
(1−ε1)t, t ≤ 0,

φ
2
=

{

w∗(1− ℓ2e
−st), t > 0,

w∗(1− ℓ2e
ε2t)eκ1t, t ≤ 0.

The assumption (H1) is proposed as

(9) (H1)
1 + k2
β2

<
k1
β1
, u∗ + k1 − 1− β1w

∗

u∗
> 0.

Under the assumption (H1), the parameters ℓ̂1, ℓ̂2, ℓ1, ℓ2, s, ζ̄1, κ1, ε1, ε2
are chosen as follows.

(I1) β2w
∗ℓ2 > max{u∗ℓ1, β2w∗ − k2},

(I2) 2u∗ + k1 − 1− β1w
∗ℓ2

u∗ℓ̂1
> 0, 2u∗ + k1 − 1− u∗

ℓ1
− β1w

∗ℓ̂2

u∗ℓ1
> 0,

(I3) Since (1−u∗)(u∗+k1)−β1w∗ = 0, u∗ >
1− k1

2
, then

[

1−u∗(1− ℓ1)
][

u∗(1−
ℓ1) + k1

]

− β1w
∗ > 0. Choose ε1 ∈ (u∗(1 − ℓ1), 1) such that

[

ε1 − u∗(1 −
ℓ1)

][

u∗(1 − ℓ1) + k1
]

− β1w
∗(1 + ℓ̂2) > 0.

(I4) Define ∆(c2, ζ) :=
D

c 2
2

ζ2 − ζ + α, then ∆(c2, ζ) = 0 has two positive roots

0 < ζ̄1 < ζ̄2 if c2 > 2
√
Dα,

(I5) Define B := 1 − β2w
∗(1− ℓ2)

k2
> 0, define ∆̄(c2, κ) =

D

c22
κ2 − κ + αB, then

∆̄(c2, κ) = 0 has two positive roots 0 < κ1 < κ2 if c2 > 2
√
Dα. Choose ε2 > 0

such that κ1 + ε2 < κ2.

(I6) Define

γ1 =
u∗

u∗ + k1

(

2u∗ + k1 − 1− β1w
∗ℓ2

u∗ℓ̂1

)

,

γ2 =
u∗(1− ℓ1)

u∗ + k1

(

2u∗ + k1 − 1− u∗ℓ1 −
β1w

∗ℓ̂2
u∗ℓ1

)

γ3 =
α(β2w

∗ℓ̂2 − u∗ℓ̂1)

u∗[(1 + ℓ̂1) + k2]ℓ̂2
, γ4 =

α(1 − ℓ2)

(u∗ + k2)ℓ2
(β2w

∗ℓ2 − u∗ℓ1),

then γi > 0 (i = 1, 2, 3, 4) from (I1) and (I2). Define the function ∆̃(s, γ3,4) :=
D

c22
s2+s−min{γ3, γ4}, s1 is the root of ∆̃(s, γ3,4) = 0, and choose s satisfying

0 < s < min{s1, γ1, γ2}.
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Lemma 2. Suppose that (H1) holds. Then, continuous functions (φ̄1, φ̄2) and

(φ
1
, φ

2
) are a pair of weak coupled upper and lower solutions of (7) with

(

φ̄1(+∞), φ̄2(+∞)
)

=
(

φ
1
(+∞), φ

2
(+∞)

)

= (u∗, w∗),
(

φ̄1(−∞), φ̄2(−∞)
)

=
(

φ
1
(−∞), φ

2
(−∞)

)

= (0, 0)

if c2 ≥ 2
√
α.

Proof. It is obvious that φ̄′2(0
+) < φ̄′2(0

−) and φ′
2
(0+) > φ′

2
(0−) hold. Next, we

prove that (φ̄1, φ̄2), (φ1
, φ

2
) satisfy (8). For t > 0, from (I2) and (I6), we have

−φ̄′1 + φ̄1

(

1− φ̄1 −
β1φ2
φ̄1 + k1

)

= u∗ℓ̂1e
−st

[

s− u∗

u∗ + k1

(

2u∗ + k1 − 1− β1w
∗ℓ2

u∗ℓ̂1

)

]

≤ 0.

For t ≤ 0,

−φ̄′1 + φ̄1

(

1− φ̄1 −
β1φ2
φ̄1 + k1

)

≤ u∗(1 + ℓ̂1)(−1 + 1)et = 0.

Thus the first inequality of (8) holds. For t > 0, from (I2) and (I6),

−φ′

1
+ φ

1

(

1− φ
1
− β1φ̄2
φ
1
+ k1

)

≥ u∗ℓ1e
−st

[

− s+
u∗ (1− ℓ1)

u∗ + k1

(

2u∗ + k1 − 1− u∗ℓ1 −
β1ℓ̂2w

∗

u∗ℓ1

)

]

≥ 0.

For t ≤ 0, in view of (I3), we get

−φ′
1
+ φ

1

(

1− φ
1
− β1φ̄2
φ
1
+ k1

)

= −A(1− ε1)e
(1−ε1)t +Ae(1−ε1)t

(

1− φ
1
− β1φ̄2
φ
1
+ k1

)

≥ Ae(1−ε1)t

φ
1
+ k1

[

[ε1 − u∗(1− ℓ1)][u
∗(1− ℓ1) + k1]− β1w

∗(1 + ℓ̂2)
]

> 0.

Similarly, for t > 0, from (I1) and (I6), we obtain

D

c22
φ̄′′2 − φ̄′2 + αφ̄2

(

1− β2φ̄2

φ̄1 + k2

)

≤ w∗ℓ̂2e
−st

[

D

c22
s2 + s− α(β2w

∗ℓ̂2 − u∗ℓ̂1)

[u∗(1 + ℓ̂1) + k2]ℓ̂2

]

≤ w∗ℓ̂2e
−st

[

D

c22
s2 + s− γ

]

≤ 0.
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For t ≤ 0, from (I4), we have

1

c22
φ̄′′2 − φ̄′2 + αφ̄2

(

1− β2φ̄2

φ̄1 + k2

)

≤ 1

c22
φ̄′′2 − φ̄′2 + αφ̄2 = w∗(1 + ℓ̂2)e

ζ̄1t

[

1

c22
ζ̄21 − ζ̄1 + α

]

= 0.

For t > 0, from (I1) and (I6), it follows that

1

c22
φ′′

2
− φ′

2
+ αφ

2

(

1−
β2φ2

φ
1
+ k2

)

≥ w∗ℓ2e
−st

[

− D

c22
s2 − s+

α(1 − ℓ2)(β2w
∗ℓ2 − u∗ℓ1)

(u∗ + k2)ℓ2

]

≥ 0.

For t ≤ 0, from (I5),

D

c22
φ′′

2
− φ′

2
+ αφ

2

(

1−
β2φ2

φ
1
+ k2

)

≥ w∗eκ1t

(

D

c22
κ21 − κ1

)

− w∗ℓ2e
(κ1+ε2t)

(

D

c22
(κ1 + ε2)

2 − (κ1 + ε2)

)

+ φ
2
αB

≥ w∗eκ1t

(

D

c22
κ21 − κ1 + αB

)

− w∗ℓ2e
(κ1+ε1t)

(

D

c22
(κ1 + ε2)

2 − (κ1 + ε2) + αB

)

≥ 0.

Therefore, we proved (8) and the lemma holds. �

Next, we construct other weak coupled upper and lower solutions of (7),
(χ̄1, χ̄2) − (χ

1
, χ

2
), (ϕ̄1, ϕ̄2) − (ϕ

1
, ϕ

2
), corresponding to type II and type III,

respectively.

χ̄1 =

{

u∗(1 + h1e
−st), t > 0,

1, t ≤ 0,
χ̄2 =

{

w∗(1 + ℓ̂2e
−st), t > 0,

w∗(1 + ℓ̂2)e
ζ̄1t, t ≤ 0,

χ
1
=

{

u∗(1− ℓ1e
−st), t > 0,

1− ℓ3e
γ̄t, t ≤ 0,

χ
2
=

{

w∗(1− ℓ2e
−st), t > 0,

w∗(1− ℓ2e
ε2t)eκ1t, t ≤ 0,

where

u∗(1 + h1) = 1, u∗(1− ℓ1) = 1− ℓ3, γ̄ =
c

D
.

ϕ̄1 =

{

u∗(1 + ℓ̂1e
−st), t > 0,

u∗(1 + ℓ̂1)e
t, t ≤ 0,

ϕ̄2 =

{

w∗(1 + ℓ̂2e
−st), t > 0,

k2/β2(1 + ℓ̂4e
η̄t), t ≤ 0,

ϕ
1
=

{

u∗(1− ℓ1e
−st), t > 0,

u∗(1− ℓ1)e
(1−ε1)t, t ≤ 0,

ϕ
2
=

{

w∗(1− h2e
−st), t > 0,

k2/β2, t ≤ 0,

and

w∗(1 + ℓ̂2) =
k2
β2

(1 + ℓ̂4), η̄ = c, w∗(1− h2) =
k2
β2
.
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To obtain the upper-lower solutions connecting (1, 0) and (0, k2/β2), we give
an assumption (H2) as follows. If (H2) holds, there is no interior equilibrium for
system (1).

(H2) k1 +
(1− k1)

2

4
− β1k2

β2
< 0.(10)

The solutions ῡi, υi(i = 1, 2), connecting (1, 0) and (0, k2/β2), are defined as
follows.

ῡ1 =

{

e−s̄t, t > 0,
1, t ≤ 0,

ῡ2 =

{

k2/β2 (1 + d1e
−s̄t) , t > 0,

d2e
ζ̄1t, t ≤ 0,

υ1 =

{

d3e
−s̄t, t > 0,

1− d4e
ρ̄t, t ≤ 0,

υ2 =

{

k2/β2(1− d5e
−s̄t), t ≥ 0,

B(1− d6e
ε3t)eτ1t, t < 0.

The parameters s̄, di (i = 1, 2, 3, 4, 5, 6), ρ̄, ε3 are chosen as

(T1) s̄ =
β1k2

β2
(1− d5)− k1 − (1− k1)

2

4
> 0;

(T2) 0 < ρ̄ < ζ̄1;

(T3) d2 =
k2

β2
(1 + d1), d3 = 1− d4;

(T4) ∆̃(c2, τ) =
D

c22
τ2− τ + α

1 + k2
= 0 has two positive roots 0 < τ1 < τ2, , choose

ε ∈ (0, τ2 − τ1) and B(1 − d6) =
k2

β2
(1− d5).

As in Lemma 2, we prove that (χ̄1, χ̄2) − (χ
1
, χ

2
), (φ̄1, φ̄2) − (φ

1
, φ

2
) and

(ῡ1, ῡ2)− (υ1, υ2) satisfy (8). Based on the above, we obtain the following theorem.

Theorem 1. (a) Continuous functions (φ̄1, φ̄2) - (φ1
, φ

2
) are a pair of weak cou-

pled upper and lower solutions of (7) with

(

φ̄1(+∞), φ̄2(+∞)
)

=
(

φ
1
(+∞), φ

2
(+∞)

)

= (u∗, w∗),
(

φ̄1(−∞), φ̄2(−∞)
)

=
(

φ
1
(−∞), φ

2
(−∞)

)

= (0, 0)

if c2 ≥ 2
√
α and (H1) holds.

(b) Continuous functions (χ̄1, χ̄2) - (χ1
, χ

2
) are a pair of weak coupled upper and

lower solutions of (7) with

(

χ̄1(+∞), χ̄2(+∞)
)

=
(

χ
1
(+∞), χ

2
(+∞)

)

= (u∗, w∗),
(

χ̄1(−∞), χ̄2(−∞)
)

=
(

χ
1
(−∞), χ

2
(−∞)

)

= (1, 0)

if c2 ≥ 2
√
α and (H1) holds.
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(c) Continuous functions (ϕ̄1, ϕ̄2) - (ϕ1
, ϕ

2
) are a pair of weak coupled upper and

lower solutions of (7) with
(

ϕ̄1(+∞), ϕ̄2(+∞)
)

=
(

ϕ
1
(+∞), ϕ

2
(+∞)

)

= (u∗, w∗),
(

ϕ̄1(−∞), ϕ̄2(−∞)
)

=
(

ϕ
1
(−∞), ϕ

2
(−∞)

)

= (0, k2/β2)

if c1 > 0 and (H1) holds.

(d) Continuous functions (ῡ1, ῡ2) - (υ1, υ2) are a pair of weak coupled upper and

lower solutions of (7) with
(

ῡ1(+∞), ῡ2(+∞)
)

=
(

υ1(+∞), υ2(+∞)
)

= (0, k2/β2),
(

ῡ1(−∞), ῡ2(−∞)
)

=
(

υ1(−∞), υ2(−∞)
)

= (1, 0)

if c2 ≥ 2
√
α and (H2) holds.

2.2 Existence and Non-existence of the four types of traveling
wave solutions

In this subsection, we establish the existence of four types of traveling wave
solutions by using iteration sequences. Suppose that (ψ̄1, ψ̄2) and (ψ

1
, ψ

2
) are a

pair of coupled upper and lower solutions of (7). Similarly as in [17], a lemma is
given to construct the monotonous iteration schemes between (ψ̄1, ψ̄2) and (ψ

1
, ψ

2
).

Lemma 3. Let y : R → R be a bounded classical solution of the following impulsive

equation

dy′′ + ay′ + by + f(t) = 0, (t 6= tj), y
′(t+j )− y′(t−j ) = βj , j = 1, 2, . . . ,m.

where {tj} is a finite increasing sequence, f : R → R is bounded and continuous

for every t 6= tj . Assume that dz2 + az + b = 0 has one negative and one positive

root λ < 0 < µ. Then

y(t) =
1

d(µ− λ)

[
∫ t

−∞

̺(t, s)f(s)ds+

∫ +∞

t

̺(t, s)f(s)ds

]

− 1

(µ− λ)

m
∑

j=1

min
{

eλ(t−tj), eµ(t−tj)
}

βj ,

where

̺(t, s) =

{

eλ(t−s), s ≤ t,

eµ(t−s), s ≥ t.

Lemma 4. Let y : R → R be a bounded classical solution of the following equation

y′ + δy = f(t),

where f : R → R is bounded and continuous on R. Then

y(t) = e−δt
∫ t

−∞

eδhf(h)dh.
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Lemmas 3 and 4 can be easily proved by direct calculation, so their proofs
are omitted.

Suppose that z, ϕ̂, ψ̂, ϕ̌, ψ̌ are bounded continuous function. We define the
following operators.

L̄1z := −z′ − Az, L̄2z :=
1

c22
z′′ − z′ −Bz,

T ψ̂1 (ϕ̂) :=

∫ s

−∞

e−A(t−s)H1(ϕ̂, ψ̂)(s)ds,

T ϕ̌2 (ψ̌) :=
c22

(λ22 − λ21)

∫ +∞

−∞

k(t, s)H2(ϕ̌, ψ̌)(s)ds,

H1(ϕ̂, ψ̂) = Aϕ̂+ ϕ̂

(

1− ϕ̂− β1ψ̂

ϕ̂+ k1

)

,

H2(ϕ̌, ψ̌) = Bψ̌ + αψ̌

(

1− β2ψ̌

ϕ̌+ k2

)

,

(11)

where A = 1 +
β1(1 + k2)

k1β2
, B = α(1 + 2/k2), and

(12) λ21 =
c22 − c2

√

c22 + 4B

2
, λ22 =

c22 + c2
√

c22 + 4B

2
, k(t, s) =

{

eλ21(t−s), s ≤ t,

eλ22(t−s), s ≥ t.

Suppose that (ψ̄1, ψ̄2) − (ψ
1
, ψ

2
) are a pair of weak upper-lower solutions of (7),

we define the sets

Λ1 := {ϕ ∈ C(R)|ψ
1
(t) ≤ ϕ(t) ≤ ψ̄1(t), t ∈ R},

Λ2 := {ϕ ∈ C(R)|ψ
2
(t) ≤ ϕ(t) ≤ ψ̄2(t), t ∈ R}.

(13)

Lemma 5. Suppose that z1 = T ψ̂1 (ϕ̂), z2 = T ϕ̌2 (ψ̌), then (z1, z2) are the bounded

solutions of the system

(14) L̄1z1 +H1(ϕ̂, ψ̂) = 0, L̄2z2 +H2(ϕ̌, ψ̌) = 0.

Moreover, if ϕ̂, ϕ̌ ∈ Λ1, ψ̂, ψ̌ ∈ Λ2, then z1 ∈ Λ1, z2 ∈ Λ2.

Proof. By direct calculation, we can easily prove that (14) holds, so we omit it
here. We prove z2 ≤ ψ̄2. Let β(t) = z2 − ψ̄2, then there exists h(t) ≤ 0 such that

D

c22
β′′(t)− β′(t)−Bβ(t) + h(t) = 0, t 6= tj , β(t

+
j )− β(t−j ) = ψ̄2(t

−
j )− ψ̄2(t

+
j ).

Since β(t) is bounded, then from Lemma 3, it follows that

β(t) =
c22

D(λ22 − λ21)

[
∫ t

−∞

eλ21(t−s)h(s)ds+

∫ +∞

t

eλ22(t−s)h(s)ds

]
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− 1

(λ22 − λ21))

m
∑

k=1

min
{

eλ21(t−tj), eλ22(t−tj)
}(

ψ̄2(t
−
j )− ψ̄2(t

+
j )

)

.

Thus β(t) ≤ 0, i.e z2 ≤ ψ̄2. Similarly, we prove that z1 ≤ ψ̄1 and ψ
i
≤ zi (i = 1, 2)

which completes the proof. �

Now, we can construct the monotonous schemes.

Step 1. We define s
(0)
1 = ψ̄1, s

(n)
1 := T

ψ
2

1 (s
(n−1)
1 ). By using comparison

principle, the scheme {s(n)1 } satisfies

ψ
1
≤ s

(n+1)
1 ≤ s

(n)
1 ≤ · · · ≤ s

(2)
1 ≤ s

(1)
1 ≤ s

(0)
1 = ψ̄1.

Thus there exists s̄1 such that

ψ
1
≤ s̄1 ≤ ψ̄1, s̄1 = T

ψ
2

1 (s̄1).

Define v
(0)
1 = ψ̄2, v

(n)
1 = T s̄12 (v

(n−1)
1 ). Similarly, we have

ψ
2
≤ v

(n+1)
1 ≤ v

(n)
1 ≤ · · · ≤ v

(2)
1 ≤ v

(1)
1 ≤ v

(0)
1 = ψ̄2.

Consequently, there exists v̄1 such that

ψ
2
≤ v̄1 ≤ ψ̄2, v̄1 = T s̄12 (v̄1).

Step 2. We define s̄k (k ≥ 3), such that s̄k = T
v̄k−1

1 (s̄k), v̄k = T s̄k2 (v̄k). The
comparison principle leads to

ψ
1
≤ s̄k+1 ≤ s̄k ≤ · · · ≤ s̄1 ≤ ψ̄1, for k ≥ 1,

ψ
2
≤ v̄k+1 ≤ v̄k ≤ · · · ≤ v̄1 ≤ ψ̄2, for k ≥ 1.

Step 3. We obtain the limits of {s̄k} and {v̄k} for k → ∞, then there exist
s̄ ∈ Λ1 and v̄ ∈ Λ2 such that s̄ = lim

k→∞
s̄k, v̄ = lim

k→∞
v̄k and s̄ = T v̄1 (s̄), v̄ = T s̄2 (v̄),

which are the solutions of

L̄1s̄+H1(s̄, v̄) = 0, L̄2v̄ +H2(s̄, v̄) = 0.

Thus (s̄, v̄) is the solution of (7) between (ψ̄1, ψ̄2) and (ψ
1
, ψ

2
). Based on the above,

we can now give the following theorem.

Theorem 2. Suppose that (7) has a pair of weak upper solution and weak lower

solution (ψ̄1, ψ̄2)− (ψ
1
, ψ

2
) with 0 ≤ ψ

i
≤ ψ̄i and ψi 6≡ 0 for i = 1, 2. Then (7) has

a solution (ψ1, ψ2) with ψi ≤ ψi ≤ ψ̄i for i = 1, 2.

Theorem 1 and Theorem 2 lead to

Theorem 3. Suppose that c1, c2 > 0, then the following statements hold.
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(i) Suppose that (H1) holds, then type I-II wave solutions exist if c2 ≥ 2
√
α, neither

of them exists if c2 < 2
√
α;

(ii) Suppose that (H1) and u∗ < β2 hold, then type III wave solution exists if

c1 > 0.

(iii) Suppose that (H2) holds, then type IV wave solution exists if c2 ≥ 2
√
α and

does not exist if c2 < 2
√
α.

Proof. The existence of the four types of wave solutions follows from Theorem 1
and Theorem 2. Next, we prove the non-existence by using reduction. From Lemma

1, we have lim
t→+∞

inf |x|<ctw(t, x) ≥ k2

β2
for each c < 2

√
α if w0(x) ≥ 0 and w0(x) 6≡ 0.

Suppose that (1) has a traveling wave solution (U(x + c1t),W (x + c1t)) with the
speed c1 < 2

√
α and the boundary condition W (−∞) = 0. Choose c1 < c2 < 2

√
α,

then w(t, x) =W (x+ c1t) has the following property:

k2
β2

≤ lim
t→+∞

inf
x=−c2t

w(t, x) = lim inf
t→+∞

W ((c1 − c2)t) =W (−∞) = 0,

which is a contradiction. Thus (1) has no traveling wave solutions with the bound-
ary condition W (−∞) = 0 if c < 2

√
α. Hence the non-existence of types (I),(II)

and (IV) is established which completes the proof.

3. TRAVELING WAVE SOLUTIONS AND MINIMAL WAVE
SPEEDS IN A 2D STRIP

We consider separately traveling wave solutions of (4) that are independent of y
and those that depend on y.

3.1. Wave solutions independent of y

Set si = x+ cit, φi(t, x) = qi(x+ cit) = ψxi (t), (i = 1, 2), then

∂φi
∂t

= ci
dqi
dsi

=
dψi
dt

,
∂2φi
∂x2

=
1

c2i

d2ψi
dt2

,

if we substitute φi(x+cit) into the system (4), we obtain the following wave system
of (4)

− ψ′
1(t) + ψ1(t)

(

1− ψ1(t)−
β1ψ2(t)

ψ1(t) + k1

)

= 0,

D

c22
ψ′′
2 (t)− ψ′

2(t) + αψ2(t)

(

1− β2ψ2(t)

ψ1(t) + k2

)

= 0.

(15)

here we write ψxi (t) as ψi(t) for convenience. According to type I-type IV wave
solutions in section 2, there are four types of wave solutions for this category. We
denote them by Type IA - Type IVA. Their existence can be obtained in a similar
way as described in Section 2, therefore we only give the theorem and omit the
proof.
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Theorem 4. Suppose that c1, c2 > 0, then the following statements hold.

(i) Suppose that (H1) holds, then type IA-IIA wave solutions exist if c2 ≥ 2
√
α,

neither of them exists if c2 < 2
√
α;

(ii) Suppose that (H1) and u∗ < β2 hold, then type IIIA wave solution exists if

c1 > 0.

(iii) Suppose that (H2) holds, then type IVA wave solution exists if c2 ≥ 2
√
α and

does not exist if c2 < 2
√
α.

3.2. Wave solutions dependent on y

In this subsection we find the solution which is dependent on y. Set si =
x+ cit, φi(t, x, y) = Ri(x+ cit, y) = ψxi (t, y), (i = 1, 2), then

∂φi
∂t

= ci
∂Ri
∂si

=
∂ψi
∂t

,
∂2φi
∂x2

=
1

c2i

∂2ψi
∂t2

,

if we substitute φi(t, x, y) into the system (4), we obtain the wave system of (4) as
follows:

− ∂ψ1

∂t
+ ψ1(t, y)

(

1− ψ1(t, y)−
β1ψ2(t, y)

ψ1(t, y) + k1

)

= 0, t ∈ R, y ∈ (−L,L),

D

c22

(

∂2ψ2

∂t2
+
∂2ψ2

∂y2

)

− ∂ψ2

∂t
+ αψ2(t, y)

(

1− β2ψ2(t, y)

ψ1(t, y) + k2

)

= 0,

t ∈ R, y ∈ (−L,L),
∂ψ2

∂y
= 0, t ∈ R, y ∈ {−L,L},

(16)

here we write ψxi (t, y) as ψi(t, y) for convenience. Similar to section 3.1, we denote
the corresponding four types of solutions by type IB - type IVB.

If we consider (16) as an elliptic system, some previous results on weak upper
and lower solution should be provided first. Suppose that Ω is a smooth region in
R2 with ∂Ω defined as follows.

∂Ω := L1 ∪ L2 ∪ Γ1 ∪ Γ2,

where L1 : y = L, −T ≤ t ≤ T ; L2 : y = −L, −T ≤ t ≤ T ; Γ1 and Γ2 are the
corresponding curves connecting L1 and L2 so that ∂Ω is smooth.

Suppose that f(t, y, u) ∈ Cα(Ω̄×R), consider the equation

−∆u+
∂u

∂t
= f(t, y, u), (t, y) ∈ Ω;

∂u

∂n
= 0, (t, y) ∈ ∂Ω, n is the outer normal vector of ∂Ω,

(17)

based on Theorem 3.10.2 in [15], we have the following lemma.
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Lemma 6. Suppose that Di ⊂⊂ Ω, (i = 1, 2, . . . ,m), Ω =
m
∑

i=1

D̄i, D̄i
⋂ D̄i+1 =

Σi, (i = 1, 2, . . . ,m− 1), D̄i
⋂ D̄j = ∅ if |j − i| 6= 1. Then if

−∆w +
∂w

∂t
≥ f(t, y, w), (t, y) ∈ Di, i = 1, 2, . . . ,m;

∂w

∂ℓ+i
+
∂w

∂ℓ−i
≥ 0, (t, y) ∈ Σi, i = 1, 2, . . . ,m− 1;

∂w

∂n
≥ 0, (t, y) ∈ ∂Ω,

(18)

where ℓ+i is the normal vector of the curve Σi along the direction in which t is

increasing and ℓ−i is the normal vector of the curve Σi along the direction in which

t is decreasing. Then w is a weak upper solution of (17) and we can define the

weak lower solution of (17) if we converse the signs of inequalities in (18).

Lemma 7 ([15]). Suppose that w̄ and w are the weak upper-lower solution of (17)
where f(t, y, ψ) ∈ C(Ω × [L, L̄]). If w̄, w ∈ L∞(Ω), w̄ ≥ w, then there exist ŵ, w̌
which are minimal and maximal solutions, respectively, of equation (17) between w
and w̄.

To obtain the solution of (16), we consider the elliptic system in the domain
Ωn, n ∈ N. Define an increasing series {Tn} with lim

n→+∞
Tn = +∞, set the bounded

Ωn ∈ R× [−L,L] with the boundary as

∂Ωn := L
(n)
1 ∪ L(n)

2 ∪ Γ
(n)
1 ∪ Γ

(n)
2 ,

where L
(n)
1 : y = L, −Tn ≤ t ≤ Tn; L

(n)
2 : y = −L, −Tn ≤ t ≤ Tn; Γ

(n)
1 and Γ

(n)
2

are the corresponding curves connecting L
(n)
1 and L

(n)
2 so that ∂Ωn is smooth.

Define

< u1, u2 >Ωn
:= {ϕ ∈ C(Ωn,R)|u1 ≤ ϕ ≤ u2 for all (t, y) ∈ Ωn}.

We first consider the following system.

−
∂ψ1

∂t
+ ψ1(t, y)

(

1− ψ1(t, y)−
β1ψ2(t, y)

ψ1(t, y) + k1

)

= 0, (t, y) ∈ Ωn,

D

c22

(

∂2ψ2

∂t2
+
∂2ψ2

∂y2

)

−
∂ψ2

∂t
+ αψ2(t, y)

(

1−
β2ψ2(t, y)

ψ1(t, y) + k2

)

= 0, (t, y) ∈ Ωn,(19)

∂ψ2

∂n
= 0, (t, y) ∈ ∂Ωn.

The definition of the weak coupled upper and lower solutions of (19) is given as
follows.

Definition 2. Define
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Σi : =
{

(t, y) : t = T̃i, y ∈ (−L,L)
}

, i = 1, 2, . . . ,m, Σ = ∪mi=1Σi;

Λ1 : =

{

ψ : Ωn → R,
∂ψ

∂t

exist and are essentially

bounded for all
(t, y) ∈ Ωn \ Σ.

}

Λ2 : =

{

ψ : Ωn → R,

∂ψ

∂t
,
∂ψ

∂y
and

∂2ψ

∂t2
,
∂2ψ

∂y2
exist and are essentially

bounded for all
(t, y) ∈ Ωn \ Σ.

}

Suppose that ψ̄i, ψi ∈ Λi, i = 1, 2. A pair of continuous functions (ψ̄1, ψ̄2) and

(ψ
1
, ψ

2
) are called weak coupled upper and lower solutions of (19) if they satisfy

− ∂ψ̄1

∂t
+ ψ̄1

(

1− ψ̄1 −
β1ψ2

ψ̄1 + k1

)

≤ 0, (t, y) ∈ Ωn \ Σ,

−
∂ψ

1

∂t
+ ψ

1

(

1− ψ
1
− β1ψ̄2

ψ
1
+ k1

)

≥ 0, (t, y) ∈ Ωn \ Σ,

D

c22

(

∂2ψ̄2

∂t2
+
∂2ψ̄2

∂y2

)

− ∂ψ̄2

∂t
+ αψ̄2

(

1− β2ψ̄2

ψ̄1 + k2

)

≤ 0, (t, y) ∈ Ωn \ Σ,

∂ψ̄

∂ℓ+i
− ∂ψ̄

∂ℓ−i
≥ 0, (t, y) ∈ Σi, i = 1, 2 . . . ,m,

D

c22

(

∂2ψ
2

∂t2
+
∂2ψ

2

∂y2

)

+ αψ
2

(

1−
β2ψ2

ψ
1
+ k2

)

≥ 0, (t, y) ∈ Ωn \ Σ,

∂ψ

∂ℓ+i
−

∂ψ

∂ℓ−i
≤ 0, (t, y) ∈ Σi, i = 1, 2, . . . ,m,

∂ψ
2

∂n
≤ 0 ≤ ∂ψ̄2

∂n
, (t, y) ∈ ∂Ωn.

(20)

where ℓ+i is the normal vector of the curve Σi along the direction in which t is

increasing and ℓ−i is the normal vector of the curve Σi along the direction in which

t is decreasing.

Lemma 8. Suppose that functions (ψ̄
(n)
1 , ψ̄

(n)
2 ) − (ψ(n)

1
, ψ(n)

2
) are a pair of weak

coupled upper-lower solution of (19), n ∈ N. Then (16) has a solution (ψ1, ψ2)

with ψ
i
≤ ψi ≤ ψ̄i for i = 1, 2, where ψ

i
= infn∈N{ψ(n)

i
}, ψ̄i = supn∈N

{ψ̄(n)
i }.

Proof. Consider the system

(21) −∂ψ
∂t

+ ψ(t, y)

(

1− ψ(t, y)−
β1ψ

(n)

2
(t, y)

ψ(t, y) + k1

)

= 0, (t, y) ∈ Ωn.

Since ψ(n)

1
, ψ̄

(n)
1 is a pair of weak lower-upper solutions of (21), there exists ψ

(1)
1n (t, y)

which is the solution of (21) and it holds that ψ
(1)
1n ∈< ψ(n)

1
, ψ̄

(n)
1 >Ωn

which
can be verified by simple calculation. Consider a convergent subsequence from
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{ψ(1)
1n (t, y)}, denoted for convenience by {ψ(1)

1n (t, y)}, then it holds that ψ
(1)
1 (t, y) =

lim
n→+∞

ψ
(1)
1n (t, y).

Consider the equation

D

c22

(

∂2ψ

∂t2
+
∂2ψ

∂y2

)

− ∂ψ

∂t
+ αψ(t, y)

(

1− β2ψ(t, y)

ψ
(1)
1n (t, y) + k2

)

= 0, (t, y) ∈ Ωn,

∂ψ

∂n
= 0, (t, y) ∈ ∂Ωn.

(22)

Since (ψ(n)

2
, ψ̄

(n)
2 ) is a pair of weak lower-upper solutions of (22), then, similar to

above, there exists ψ
(1)
2 (t, y) = lim

n→+∞
ψ
(1)
2n (t, y). Moreover, ψ

(1)
1 (t, y) and ψ

(1)
2 (t, y)

satisfies

D

c22

(∂2ψ
(1)
2

∂t2
+
∂2ψ

(1)
2

∂y2

)

−
∂ψ

(1)
2

∂t
+ αψ

(1)
2

(

1−
β2ψ

(1)
2

ψ
(1)
1 + k2

)

= 0, (t, y) ∈ R× (−L,L),

∂ψ
(1)
2

∂n
= 0, t ∈ R, y ∈ {−L, L}.

(23)

Consider the equation

(24) −∂ψ
∂t

+ ψ(t, y)

(

1− ψ(t, y)− β1ψ
(1)
2n (t, y)

ψ(t, y) + k1

)

= 0, (t, y) ∈ Ωn.

Since (ψ(n)

1
, ψ

(1)
1n ) is a pair of weak lower-upper solutions of (24), then ψ

(2)
1n (t, y) is the

solution of (24) and ψ
(2)
1n ∈< ψ(n)

1
, ψ

(1)
1n >Ωn

. Also, ψ
(2)
1 (t, y) = lim

n→+∞
ψ
(2)
1n (t, y) ≤

ψ
(1)
1 (t, y) where ψ

(2)
1 (t, y) and ψ

(1)
2 (t, y) satisfy

(25) −∂ψ
(2)
1

∂t
+ψ

(2)
1 (t, y)

(

1−ψ(2)
1 (t, y)− β1ψ

(1)
2 (t, y)

ψ
(2)
1 (t, y) + k1

)

= 0, (t, y) ∈ R×(−L,L).

Consider the system

D

c22

(

∂2ψ

∂t2
+
∂2ψ

∂y2

)

− ∂ψ

∂t
+ αψ(t, y)

(

1− β2ψ(t, y)

ψ
(2)
1n (t, y) + k2

)

= 0, (t, y) ∈ Ωn,

∂ψ

∂n
= 0, (t, y) ∈ ∂Ωn.

(26)

Since (ψ(n)

2
, ψ

(1)
2n ) is a pair of weak lower-upper solutions of (26), then, similarly

ψ
(2)
2 (t, y) = lim

n→+∞
ψ
(2)
2n (t, y) ≤ ψ

(1)
2 (t, y). Moreover, ψ

(2)
1 (t, y) and ψ

(2)
2 (t, y) satisfy

D

c22

(∂2ψ
(2)
2

∂t2
+
∂2ψ

(2)
2

∂y2

)

−
∂ψ

(2)
2

∂t
+ αψ

(2)
2

(

1−
β2ψ

(2)
2

ψ
(2)
1 + k2

)

= 0, (t, y) ∈ R× (−L,L),

∂ψ
(2)
2

∂n
= 0, t ∈ R, y ∈ {−L, L}.

(27)
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By repeating the above iterative steps, we obtain the following two monotonous
schemes.

ψ
1
≤ · · · ≤ ψ

(n+1)
1 ≤ ψ

(n)
1 ≤ · · · ≤ ψ

(1)
1 ≤ ψ̄1,

ψ
2
≤ · · · ≤ ψ

(n+1)
2 ≤ ψ

(n)
2 ≤ · · · ≤ ψ

(1)
1 ≤ ψ̄2,

hence ψ1, ψ2 are the limits of ψ
(n)
1 , ψ

(n)
2 such that (19) holds. Thus the lemma is

proved.

From Lemma 8, to establish the existence of type IB wave solution, we con-
struct the weak upper and lower solutions of (19) by doing some modifications on
(φ̄1, φ̄2)− (φ

1
, φ

2
) proposed in section 2. Define

ϕ
(n)
1 (t) = w∗

(

1 + ℓ̂2e
−s(Tn−δ)

)

eζ̄1(t−Tn+δ),

ϕ2(t) =
1 + k2
β2

− aemt,

ϕ
(n)
3 (t) = w∗

(

1− ℓ2e
−s(Tn−δ)eε2(t−(Tn−δ))

)

eκ1(t−(Tn−δ)),

ϕ∗(t) =
1 + k2
β2

− aemt + bem̄t,

where

w∗(1 + ℓ̂2)e
ζ̄1(−Tn+δ) =

1 + k2
β2

− aem(−Tn+δ), m >

1 +

√

1 +
4Dα

c2
2

2
= r1,

κ1
κ1 + ε2

< ℓ̂2e
−s(Tn−δ),

am = bm̄, (ϕ∗)′(0) = 0, 0 < m̄ < ζ̄1 < r1 < m, a > 0, b > 0,

Note that

D

c22
ϕ∗′′ − ϕ∗′ + αϕ∗

(

1− β2ϕ
∗

1 + k2

)

=
D

c22
ϕ∗′′ − ϕ∗′ +

αϕ∗β2
1 + k2

(aemt − bem̄t) ≤ D

c22
ϕ∗′′ − ϕ∗′ + αaemt

= (−a)emt
[

D

c22
m2 −m− α

]

+ bem̄t
[

D

c22
m̄2 − m̄− α

]

< 0,

and there exist t̃1 < 0 and t̃2 > 0 such that

− amemt̃1 + bm̄em̄t̃1 > w∗(1 + ℓ̂2)ζ̄1e
ζ̄1 t̃1 ,

− amemt̃2 + bm̄em̄t̃2 < −sw∗ l̂2e
−st̃2 .

(28)

Define
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φ̄
(n)
1 =

{

u∗(1 + ℓ̂1e
−st), t > 0,

u∗(1 + ℓ̂1)e
t, t ≤ 0,

φ̄
(n)
2 =























ϕ
(n)
1 (t), t ∈ {t > Tn − δ} ∩ {t ∈ Ω},
w∗(1 + ℓ̂2e

−st), t̃2 < t < Tn − δ,
ϕ∗(t), t̃1 < t < t̃2,

w∗(1 + ℓ̂2)e
ζ̄1t, −Tn + δ ≤ t < t̃1,

ϕ2(t), t ∈ {t < −Tn + δ} ∩ {t ∈ Ω},

(29)

and

φ(n)

1
=

{

u∗(1− ℓ1e
−st), t > 0,

u∗(1− ℓ1e
−s)e(1−ε1)t, t ≤ 0,

φ(n)

2
=







ϕ
(n)
3 (t), t ∈ {t > Tn − δ} ∩ {t ∈ Ω},
w∗(1 − ℓ2e

−st), 0 < t < Tn − δ,
w∗(1 − ℓ2e

ε2t)eκ1t, t ≤ 0.

(30)

Here

Σ1 = {(t, y)|t = Tn − δ, y ∈ (−L,L)}, Σ2 = {(t, y)|t = t̃2, y ∈ (−L,L)},
Σ3 = {(t, y)|t = −Tn + δ, y ∈ (−L,L)}, Σ4 = {(t, y)|t = t̃1, y ∈ (−L,L)}.

By simple calculation, we have

∂φ̄2

∂ℓ+i
+
∂φ̄2

∂ℓ−i
≥ 0, (t, y) ∈ Σi, i = 1, 2, 3, 4,

∂φ
2

∂ℓ+i
+
∂φ

2

∂ℓ−i
≤ 0, (t, y) ∈ Σi, i = 1, 2, 3, 4.

Together with

D

c22
ϕ′′
2 − ϕ′

2 + αϕ2

(

1− β2ϕ2

1 + k2

)

=
D

c22
ϕ′′
2 − ϕ′

2 +
αϕ2β2
1 + k2

(aemt) ≤ D

c22
ϕ′′
2 − ϕ′

1 + αaemt

= (−a)emt
[

D

c22
m2 −m− α

]

< 0,

and
∂ϕ

(n)
1

∂n
|∂Ωn

> 0,
∂ϕ2

∂n
|∂Ωn

> 0,
∂ϕ

(n)
3

∂n
|∂Ωn

< 0, it follows that (φ̄
(n)
1 , φ̄

(n)
2 ) −

(φ(n)

1
, φ(n)

1
) are the weak coupled upper-lower solutions of (19). In view of

lim
n→+∞

φ(n)

1
(Tn) = lim

n→+∞
φ̄
(n)
1 (Tn) = u∗,

lim
n→+∞

φ(n)

2
(Tn) = lim

n→+∞
φ̄
(n)
2 (Tn) = w∗,
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lim
n→+∞

φ(n)
1

(−Tn) = lim
n→+∞

φ̄
(n)
1 (−Tn) = 0,

lim
n→+∞

φ(n)
2

(−Tn) = lim
n→+∞

φ̄
(n)
2 (−Tn) = 0,

by Lemma 8, (U,W ) is the solution of (16) where (U(−∞),W (−∞)) = (0, 0),
(U(+∞),W (+∞)) = (u∗, w∗). Hence (U,W ) is the type IB solution of (19) with
respect to y. Similarly, type IIB-type IVB solutions can be obtained by doing similar
modifications on the corresponding weak coupled upper-lower solutions in section
2. Thus we have the following theorem.

Theorem 5. For c1, c2 > 0, the following statements are valid.

(i) Suppose that (H1) holds, then type IB-IIB wave solutions exist if c2 ≥ 2
√
α,

neither of them exists if c2 < 2
√
α;

(ii) Suppose that (H1) and u∗ < β2 hold, then type IIIB wave solution exists if

c1 > 0.

(iii) Suppose that (H2) holds, then type IVB wave solution exists if c2 ≥ 2
√
α and

does not exist if c2 < 2
√
α.

4. Discussion, conclusion and simulation

1. k1/β1 and k2/β2

There are four possible equilibria of the system (1) and their meaning is
analyzed in [3] and [13]. One can see that (0, 0) and (1, 0) are unstable, while
(u∗, w∗) and (0, k2/β2) are stable under different conditions. This causes a change
in the long time behavior of the system when moving to either (u∗, w∗) or (0, k2/β2).
From Proposition 1, one can see that k1/β1 and k2/β2 can be used to describe the
survivability of the prey u and the predator w, respectively. For more details, we
refer the reader to [13]. For k1/β1 > k2/β2, the prey has strong survivability, so it
won’t vanish, and thus a co-existing equilibrium (u∗, w∗) exists. For k1/β1 < k2/β2,
the prey has weak survivability and will be extinct, thus the co-existing equilibrium
doesn’t exist. However the predator can still survive due to its food diversity.

2. Traveling wave solutions and invasion speeds

The wave solutions exhibit many kinds of propagation phenomena in ecol-
ogy. In a linear habitat initially not populated by neither predators nor prey, the
introduction of species at one end may result in invasion of prey or predators under
combined effects of both diffusion and population growth. A type I wave solution
means a zone of transition from the absence of both species to a globally stable
state of co-existence across the habitat. A type II wave solution means a zone
of transition from absence of predators and a large amount of prey to (u∗, w∗),
which means that predators are successful in invasion. Similarly, a type III solu-
tion means the successful invasion of the prey. As for a type IV wave solution, it
means the successful invasion of predators and the extinction of prey due to its
weak survivability.
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3. The significance of the results

Using Theorem 3 as an example, we illustrate the significance of our results.
First, we point out that the invasion speed of the predator is 2

√
α (refer to (i)-(ii)

of Theorem 3). Second, condition (H1) implies the prey has strong survivability,
thus the wave solution shifts towards the co-existing equilibrium (u∗, w∗) if and
only if the invasion speed of the predator is not less than 2

√
α, see Theorem 3 (i).

As for the decrease of prey in the type (II) solution, it is caused by interspecific
competition of the prey itself. Condition u∗ < β2 in (ii) of Theorem 3 means the
prey needs strong survivability when the initial predator is k2/β2 and not 0, which
is reasonable. However, (H2) in (iii) of Theorem 3 means the survivability of the
prey is weak, thus it will be extinct. Therefore the predator is successful in invading
if the speed of predator is not less than 2

√
α.

To conclude, the system (1) exhibits specific biological significance, and the
theorems provided in this paper comply with the natural rules of ecology.

In what follows we provide the simulations of some results. Figures 1 and
2 are the traveling wave solutions in R2, while Figure 3 shows the graphs of the
traveling wave solutions in a 2-D strip. The first two graphs of Figures 1–2 are the
sectional view of the solutions of u(t, x1, x2) = U(e1x1 + e2x2 + c1t), w(t, x1, x2) =
W (e1x1 + e2x2 + c2t) at x2 = 10, whereas the last two graphs of show the graphs
of U(s1),W (s2), where si = e1x1 + e2x2 + cit. Likewise, the first two graphs
of Figure 3 show the section view of the solutions of u(t, x, y) = U(x + c1t, y),
W (t, x, y) = U(x+ c2t, y) for y = 10 and last two graphs are the graphs of U(s1, y),
W (s2, y), where s1 = x + c1t, s2 = x + c2t. We select the parameters as follows:
k1 = 3, k2 = 1, β1 = 1, β2 = 1, D = 1, α = 2, c1 = 3, c2 = 4.

Figure 1.
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Figure 2.

Figure 3.
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