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ON TREES WITH MAXIMUM ALGEBRAIC

CONNECTIVITY

Nair Abreu, Lilian Markenzon, Luciana Lee, Oscar Rojo

In this paper, trees with fixed diameter and any number of vertices are in-

vestigated. A subclass of trees with diameter 2k is introduced, the diameter

path trees (dp-trees). Two subclasses of dp-trees are defined in which we

characterize the elements that maximize the algebraic connectivity. Also, it

is proved that if any tree maximizes the algebraic connectivity over all trees

with diameter 2k then it is a dp-tree. For such trees, a bound for the degrees

of their vertices is given. In the case of the odd diameter, 2k − 1, we show

that P2k is the only tree that maximizes the algebraic connectivity.

1. INTRODUCTION

Let G = (V,E) be a simple undirected graph on n vertices. The Laplacian
matrix of G is the n×n matrix L(G) = D(G)−A(G) where A(G) is the adjacency
matrix and D(G) is the diagonal matrix of vertex degrees.

Let µ1(G) ≥ · · · ≥ µn−1(G) ≥ µn(G) = 0 be the Laplacian eigenvalues of G.
Fiedler [9] proved that G is a connected graph if and only if µn−1(G) > 0. This
eigenvalue is called the algebraic connectivity of G, denoted by a(G), and it has
received much attention, mainly with respect to application on trees as it can be
seen in [7], [8], [9], [10], [11], [12], [13], [23],[25], [26], [27], [28], [29], and [30]. In
2015, an interesting paper regarding the maximization of the algebraic connectivity
for some classes of graphs became available, see [18]. Among several results and
conjectures, that paper gives an upper bound to the algebraic connectivity of a
tree as a function of its number of vertices and its maximal degree. One can find
a complete review on ordering of trees via algebraic connectivity in [2]. Also, a
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general survey (up to 2006) on the algebraic connectivity of graphs can be found
in [1].

This paper approaches trees with fixed diameter and any number of vertices.
In Section 2, some basic results are revisited. In Section 3, the concept of diameter

path tree, dp-tree, is introduced and, from this concept, a partition of the set of
trees with even diameter is given. In Section 4, we present a subclass of dp-trees in
which each tree maximizes the algebraic connectivity among all trees with diameter
at least 2k. Also, another subclass of dp-trees, the perfect rose trees, is defined. A
short discussion on center, centroid and characteristic vertex is done and a char-
acterization of Type I and Type II of these trees is determined. Also, we give an
infinite number of Type I trees with two centroids as an answer to the question
proposed in 1987 by Merris [22]. Section 5 is devoted to two general results: the
first one presents a condition on the vertex degrees of a dp-tree so that it does not
maximize the algebraic connectivity of trees in its class. The second result shows
that the path P2k is only one tree with maximum algebraic connectivity over all
trees with diameter 2k − 1.

2. BASIC RESULTS

Let T = (V,E) be a tree with n vertices and diameter d. In this section
we review the result given of Cvetković et al. [5] who prove that the algebraic
connectivity of trees with diameter d is maximized by the algebraic connectivity of
the path Pd+1. The section follows with the definition of the Fiedler vector which
allows us to classify the trees in Type I and Type II, the important classes of trees
introduced by Anderson and Morley [3, 4] and revisited by Fiedler [10] and
Grone and Merris [12]. In addition, the notion of the bottleneck matrices, as
studied by Kirkland [16, 17], is presented in order to use it in the next sections.
Finally, we present two results due to Fallat and Kirkland [7] that characterize
the tree (unless isomorphism) which maximizes the algebraic connectivity of trees
with fixed diameter and fixed number of vertices.

Proposition 1. [5] Let T be a tree with diameter d. Then

a(T ) ≤ 2
(

1− cos
π

d+ 1

)

= a(Pd+1),

where a(Pd+1) denotes the algebraic connectivity with diameter d.

Theorem 1. [10] If f is an eigenvector associated with a (T ) then exactly one of

the following two cases occurs :

1. (A) No entry of f is 0. In this case, there is a unique pair of vertices vi and
vj such that vi and vj are adjacent with fi > 0 and fj < 0. Moreover, the

entries of f are increasing along any path in T which starts at vi and does

not contain vj and the entries of f are decreasing along any path in T which

starts at vj and does not contain vi.
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2. (B) Some entry of f is 0. In this case, the subgraph induced by the vertices

corresponding to zeros in f is a connected subgraph. Moreover, there is a

unique vertex vr such that fr = 0 and vr is adjacent to a vertex vs with

fs 6= 0. The entries of f are either increasing, decreasing or identically 0
along any path in T starting at vr.

The tree T is said to be Type II if (A) holds and the vertices vi and vj are
called the characteristic vertices of T. The edge defined by vi and vj is called the
characteristic edge of T. The tree T is said to be Type I if (B) holds and the vertex
vr is called the characteristic vertex of T.

The vector f = [f1, f2, . . . , fn−1, fn]
T associated with a(T ) such that each

coordinate corresponds to a label of each vertex of T is known as the characteristic
valuation as the Fiedler vector of the tree.

Let T be a tree and v a vertex of T. The removal of a vertex v of T results in
a forest with two or more connected components; each one of these components is
called branches at v. The length of a path is the number of its edges. Given a vertex
v, r(v) denotes the length of the longest path starting at v. A center of a tree T
is a vertex c such that r(c) = minv∈V r(v). The diameter of T is diam(T ) = 2r(c).
The maximum number of edges in any branch at v in T is the weight of v, w(v).
A vertex t is a centroid of T if w(t) = minv∈V w(v).

Let ρ(A) be the spectral radius of a matrix A. For nonnegative matrices A
and B,A << B means that there exists a permutation matrix P such that PAP t

is entrywise dominated by a principal submatrix of B whenever the order of A is
strictly less than the order of B or entrywise dominated by B with strict inequality
in at least one entry whenever A and B have the same order. Moreover, from the
Perron-Frobenius Theory for nonnegative matrices, if A and B are positive and
A << B then ρ(A) < ρ(B). For more details see [14].

Let v be a vertex of T. Let Lv be the principal submatrix of the Laplacian
matrix L(T ) obtained by deleting the v-row and v-column from L(T ). The inverse
of Lv, that is L

−1
v , is known as the bottleneck matrix of T at v.

Lemma 1. [17] Let v be a vertex in a tree T. The (i, j)-entry of L−1
v is equal to

the number of edges of T which are on both the path from vertex vi to vertex v and

the path from vertex vj to vertex v.

Clearly the (i, j) entry of L−1
v is positive if and only if the vertices vi and vj

are in the same branch of T at the vertex v. Then, there is a labelling of the vertices
of T such that L−1

v is similar to a block diagonal matrix in which the number of
diagonal blocks is the degree of the vertex v. Each block of L−1

v corresponds to a
branch at v and it is called the bottleneck of matrix of the branch. The Perron root
of the bottleneck matrix of a branch is called the Perron root of the branch. The
Perron value is the greatest eigenvalue among all the greatest eigenvalues to each
block of L−1

v . A branch is called a Perron branch if its Perron root is the Perron
value which is equal to the spectral radius of L−1

v .

The next two theorems characterize, via bottleneck matrices, Type II and
Type I trees, respectively.
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Theorem 2. [17] Let vi and vj be adjacent vertices in a tree T. Then, T is a Type

II tree with characteristic vertices vi and vj if and only if the following condition

holds : There exists γ, 0 < γ < 1, such that ρ(M1 − γJ) = ρ(M2 − (1 − γ)J),
where M1 is the bottleneck matrix for the branch at vj containing vi, and M2 is

the bottleneck matrix for the branch at vi containing vj . Moreover, the algebraic

connectivity of T satisfies a(T ) =
1

ρ(M1 − γJ)
=

1

ρ(M2 − (1− γJ))
.

Theorem 3. [17] T is a Type I tree with characteristic vertex vr if and only if T

has 2 or more Perron branches at vr. Moreover, a(T ) =
1

ρ
(

L−1
r

) .

In [7], for a given n and a fixed diameter d, Fallat and Kirkland charac-
terize trees with n vertices that maximize the algebraic connectivity over all such
trees.

Lemma 2. [7] For a fixed n and a fixed even d, the tree with n vertices and diameter

d which maximizes the algebraic connectivity over such all trees is that constructed

by taking a path on vertices 1, 2, . . . , d+ 1 and adding n− d− 1 pendant vertex to

the vertex
d

2
+ 1 of the path.

Lemma 3. [7] For a fixed n and a fixed odd d, the tree with n vertices and diameter

d which maximizes the algebraic connectivity over such all trees is that constructed

by taking a path on vertices 1, 2, . . . , d+ 1 and adding n− d− 1 pendant vertex to

the vertex
d+ 1

2
of the path.

3. DIAMETER PATH TREES

Let k be a positive integer. Let Dk be the class of trees with diameter 2k.
Each T ∈ Dk has only one center c which lies on the center of each path with length
2k. If one of these paths is such that it has two branches at c isomorphic to Pk,
we call it a diameter path and denote Pdiam. Every tree T ∈ Dk which contains a
Pdiam is called a diameter path tree, or simply, dp-tree. We denote D+

k the class of
all dp-trees and D−

k , the remaining trees in Dk. Obviously, Dk = D+
k ⊎ D−

k , where
⊎ means the disjoint union of sets.

As examples, the trees given by Lemma 2 are dp-trees but those given by
Lemma 3 are not. Also, Figure 1 displays a dp-tree and Figure 2 displays a non
dp-tree.

Figure 1. T1 is a dp-tree.
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Figure 2. T2 is not a dp-tree.

It is well known that algebraic connectivity of P2k+1 is a(P2k+1) = 2
(

1 −
cos

π

2k + 1

)

. From now on we denote a(P2k+1) = ak. For all i, 1 ≤ i ≤ 2k + 1, let

us label vi the vertices of P2k+1 (from left to right).

Remark I. For k ≥ 2, the path P2k+1 is a Type I tree and vk+1 is its characteristic vertex.
Of course it is also the center and the centroid of the tree, c = t = vk+1. Both Perron
branches at c in P2k+1 are isomorphic to Pk whose bottleneck matrix is

B =



















k k − 1 k − 2 · · · 2 1
k − 1 k − 1 k − 2 · · · 2 1
k − 2 k − 2 k − 3 · · · 2 1

...
...

... · · · 2 1
2 2 2 · · · 2 1
1 1 1 · · · 1 1



















and, according to Theorem 3, its spectrum radius is ρ(B) =
1

ak

.

Theorem 4. For k ≥ 2, if T ∈ D−

k then a(T ) < ak.

Proof. Let H be a tree formed by the labelled path P2k+1 plus a pendant edge
(u, vi) for some 1 ≤ i ≤ k. Then H has only two branches at vk+1. One of them, B1

is isomorphic to Pk and, the other B2, is the subtree of H induced by the vertices u
and v1, . . . , vk. Since d(vi) = 3, for some i = 2, . . . , k, H does not have any diameter
path. So, H ∈ D−

k . Moreover, the bottleneck matrix B1, denoted by M1, is equal

to the matrix B given in Remark I. So, its spectrum radius is ρ(M1) = ρ(B) =
1

ak

.

The bottleneck matrix of B2 is

M2 =

(

M1 (k − i)1
(k − i)1t k − i+ 1

)

,

where 1 is the column vector of 1’s and 1t is its transposed vector. From Cauchy
Theorem [14], the eigenvalues of M2 interlace with the eigenvalues of M1. Conse-

quently, ρ(M1) ≤ ρ(M2). However, k > 1 then ρ(M2) 6= ρ(M1). Since, ρ(M1) =
1

ak

and ρ(M2) =
1

a(H)
,

(1) a(H) < ak.

Now, let T ∈ D−

k . Since T does not have any diameter path, every branch B
at c in T has at least a subtree isomorphic to H. However, it is well known that

(2) a(T ) ≤ a(H).
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Hence, from (2) and (1), the result follows.

4. TWO SUBCLASSES OF D
+

k

We begin this section with a subclass of dp-trees in which every tree in is
Type I and it maximizes the algebraic connectivity among all trees with diameter
at least 2k.

4.1. Ck trees

We define Ck as the class of trees with diameter 2k such that each branch at
c has at most k vertices. Figure 3 displays a tree that belongs to C4.

Figure 3. A tree of C4.

Lemma 4. For k ≥ 2, Ck ⊂ D+
k .

Proof. For k ≥ 2, let T ∈ Ck. Then, every branch at c has at most k vertices.
Since diam(T ) = 2k, there are at least two branches at c in T with length k − 1.
Each one of these branches is isomorphic to Pk. So, T ∈ D+

k .

The next theorem shows that every tree in Ck satisfies the upper bound to
the algebraic connectivity given by Theorem 1.

Theorem 5. Every tree T ∈ Ck is a Type I tree where the characteristic vertex

and the centroid lies on the center of T. Besides, ∀T ∈ Ck, a(T ) = ak and so, it

maximizes the algebraic connectivity of all trees with diameter at least 2k.

Proof. Let T ∈ Ck. Then, T has at least one Pdiam as an induced subtree. Let
the vertices of Pdiam be labelled as before. The center of T is c = vk+1 and, except
to leaves v1 and v2k+1 and the center vk+1, every vertex v of Pdiam is such that
d(v) = 2 in T. Each branch of Pdiam at c has k − 1 edges and since any other
branch at c in T (if there one) has at most k vertices, it has at most k − 1 edges.
Consequently, the weight of the center is w(vk+1) = k−1 and for every v ∈ T, v 6= c,
w(v) ≥ k. So, w(c) < w(v) and vk+1 is the unique centroid of T which lies on c.
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Since T is a dp-tree, T has at least two branches at c, B1 and B2 isomorphic
to Pk, equal to the branches of Pdiam at vk+1. Hence, their respective bottleneck
matrices M1 = M2, are equal to B given in Remark I.

Let R be any other branch in T (if there is any) such that R 6= Bi, i = 1, 2,
and MR be its bottleneck matrix. Since the order of MR is at most k, one can
easily see that MR << M1 and so, MR << M2. Thus, B1 and B2 are Perron
branches at c in T. From Theorem 3, T is a Type I tree and a(T ) = ak. From
Proposition 1, every T ∈ Ck satisfies the upper bound of the algebraic connectivity
of the path P2k+1. Besides, it is well known that a(P2k+1) < a(P2k). Consequently,
a(T ) maximizes the algebraic connectivity of all trees with diameter at least 2k.

4.2. Perfect rose trees

The trees called Fiedler roses, also known as rose trees, were introduced by
Evans [6] and, more recently studied by Lefèvre [19].

Given k, t, ℓ natural numbers, a rose tree R(k, t, ℓ) is the graph built from
the path Pk+t+1 = {v1, . . . , vk+t+1} and the star S1,ℓ by connecting the vertex
vk+1 of the path to the center s = vk+t+2 of the star. Let vk+t+3, , . . . , vn be
the other vertices of the star. Denote [S1,ℓ] the subgraph of R(k, t, ℓ) induced by
{vi, i = k + t + 2, . . . , vn}. If t = k, we say that it is a perfect rose tree, denoted
R(k, ℓ). Obviously R(k, ℓ) ∈ D+

k , it has 2k + ℓ + 2 vertices and the center vk+1 of
the path is the center c of the tree. Figure 4 displays the perfect rose tree R(4, 5).

Figure 4. R(4, 5) with c and s as highlighted vertices

Denote the algebraic connectivity of R(k, ℓ) more simply as ak,ℓ. Let f =
[f1, . . . , fk+1, .., f2k+1, f2k+2, . . . , fn] be the Fiedler vector of R(k, ℓ) where fi, 1 ≤
i ≤ n is the label of vi.

The next result was implicitly proved, under distinct arguments, by Lefèvre

[19] and Zimmermann [32].

Theorem 6. Let R(k, ℓ) be a perfect rose tree, k ≥ 2. The following statements

are equivalent :

(a) Rk,ℓ is Type I;

(b) R(k, ℓ) maximizes the algebraic connectivity;

(c)
1

2
(ℓ+ 2 +

√
ℓ2 + 4ℓ ) ≤ 1

ak

.

Proof. (a) ⇒ (b) Let k ≥ 2 and R(k, ℓ) be a Type I tree with vk+1 as its charac-
teristic vertex. There are 3 branches at vk+1 in R(k, ℓ), of which, two of them are
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isomorphic to Pk. So, their respective bottleneck matrices are equal to B as given
in Remark I such that

(3) ρ(B) =
1

ak

,

where ak = a(P2k+1) =
1

2
(

1− cos
(

π

2k + 1

)) . Then, (b) holds.

(b) ⇒ (c) The third branch of R(k, ℓ) is isomorphic to S1,ℓ with (ℓ+1)×(ℓ+1)
bottleneck matrix,

M =

(

I + J 1

1t 1

)

,

where I is the identity matrix, J is the matrix of 1’s, both of them of order ℓ, 1 is
the column vector of 1’s and 1t is its transposed vector.

The spectrum of M is known and their eigenvalues are: 1[ℓ],
1

2
(ℓ + 2 +

√
ℓ2 + 4ℓ ) and

1

2
(ℓ+ 2−

√
ℓ2 + 4ℓ ). Hence, the spectral radius of M is

(4) ρ(M) =
1

2
(ℓ+ 2 +

√

ℓ2 + 4ℓ).

and

(5) ak,ℓ =
1

max{ρ(M), ρ(B)}
.

From (3), ρ(B) ≤ ρ(M) and from (4),

(6)
1

2
(ℓ+ 2 +

√

ℓ2 + 4ℓ) ≤ 1

ak

.

(c) ⇒ (a) Now, we have to suppose that the inequality (6) holds. So, from
(5), we get ak = ak,ℓ. Hence, R(k, ℓ) maximizes the algebraic connectivity among
all such trees. Moreover, it has two Perron branches at vk+1 and, by Theorem 3,
R(k, ℓ) is a Type I tree.

Remark II. Denote yk the maximum number of leaves of the induced subtree [S1,ℓ] in

R(k, ℓ) such that ak,ℓ = ak. For k = 2, and by Theorem 2, yk = 1. For k > 2, we get

yk =
⌊ (1− ak)

2

ak

⌋

via the aid of the eigenvalues location algorithm given in [15]. Since

k > 2, ak ≤ 0.19806, so yk =
⌊ 1

ak

⌋

− 2.

Corollary 1. The perfect rose tree R(k, ℓ) ∈ D+
k − Ck is a Type I tree if and only

if k − 1 < ℓ < yk + 1.

Proof. By the defintion of Ck, R(k, ℓ) ∈ D+
k −Ck if and only if k− 1 < ℓ and, from

Theorem 6, R(k, ℓ) is a Type I tree if and only if ℓ < yk + 1.
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Since (D+
k −Ck) 6= ∅, we obtain a partition of Dk as Dk = Ck⊎(D+

k −Ck)⊎D−

k .
See Figure 5.

For instance, in D+
3 there are only four Type I trees: R(3, 0), R(3, 1), R(3, 2)

and R(3, 3) because y3 = 3; all of them have a3 = a(P7) = 0.19806. Observe that
R(3, 3) /∈ C3.

Figure 5. Partition of Dk = Ck

⊎

(D+

k − Ck)
⊎

D−

k .

4.3. Centroids and characteristic vertices

According to Merris [22], some properties of the characteristic vertex (ver-
tices) are reminiscent of similar properties of centroid(s) and/or center(s) of a tree
T. Moreover, Merris, in the same paper, posed the following questions:

1. What is the relationship between the characteristic vertex (characteristic ver-
tices) and centroid(s) or center(s) of a tree T ?

2. If T is of Type I must it have be a unique centroid point?

3. If there is a unique centroid t and a unique center c, is (are) the characteristic
vertex (characteristic vertices) contained in the path from t to c?

From 1987, when these questions were posed, up to now, we could not find answers
to them. The next proposition gives a necessary and sufficient condition for a
perfect rose tree to have two centroids. This characterization leads to Proposition
3 which provides us infinite counter-examples to the second question posed by
Merris [22].

Proposition 2. A perfect rose tree R(k, ℓ) has two centroids c and s if and only

if ℓ = 2k. Otherwise, if ℓ < 2k, the centroid lies on the center of the tree and, if

ℓ > 2k, the centroid lies on s, the center of the star S1,ℓ.
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Proof. Let R(k, ℓ) be labelled as in Figure 6.

It is enough to observe the weights of the vertices of R(k, ℓ) as follow

w(vi) =















ℓ, i = k + 1;
2k, i = s;
w(v2k−i+2) = 2k + ℓ− i+ 1, i = 1, .., k;
2k + ℓ− 1, for the other cases.

Figure 6. The weights of the vertices of R(k, l).

Proposition 3. For k ≥ 5, every perfect rose tree R(k, 2k) is a Type I tree and it

has two centroids.

Proof. From Proposition 2, R(k, 2k) has two centroids and, from Theorems 3 and
6, R(k, 2k) is a Type I tree if and only if

(7) 2k + 2 +
√

16k2 + 8k ≤ 2

ak

.

Hence, we can see that (7) holds if and only if k ≥ 5.

5. TWO GENERAL RESULTS

Given k, ℓ and r ≤ k− 2, a generalized perfect rose tree G(k, r, ℓ) is the graph
built from the path P2k+1 and the star S1,ℓ by connecting the center of the path
vk+1 and the center s of the star to the extremities of a path Pr, r ≥ 0. If r = 0,
vk+1 is directly connected with s. The order of G(k, r, ℓ) is 2k + ℓ+ r + 2.

Figure 7. Generalized perfect rose tree R(4, 1, 5)
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Lemma 5. Let yk =
⌊

1

ak

⌋

− 2. If 1 ≤ r ≤ k − 2 and ℓ = yk then, a(G(k, r, yk)) <

a(R(k, yk)).

Proof. The three branches of the generalized perfect rose at c are B1 and B2,
both of them isomorphic to Pk, and B3 composed by Pr and S1,ℓ. The bottleneck
matrices of B1 and B2 are equal to B given in Remark I. The bottleneck matrix of
the B3 has order yk + r + 1 and is equal to

M =

(

X Rr

Rt
r Y

)

,

where X = [xij ] is a matrix of order yk + 1 such that

xij =

{

r + 2, i = j;
r + 1, i < j.

Rr is a matrix with yk + 1 line vectors equal to (r, r − 1, r − 2, · · · , 2, 1) and
Y is a matrix of order r equal to the bottleneck matrix B of the branch Pr given
by Remark I.

Since B << M, ρ(B) < ρ(M). Consequently, a(G(k, r, yk)) < a(R(k, yk)).

Theorem 7. Let T ∈ Dk. If a(T ) = ak then T ∈ D+
k and for every vertex v of T,

v 6= c, d(v) <
⌊

1

ak

⌋

− 2.

Proof. Straightforward from Theorem 4, T ∈ D+
k . Let v 6= c in T such that

d(v) ≥ yk, being yk =
⌊

1

ak

⌋

− 2. Let xi, 1 ≤ i ≤ yk + 1 vertices adjacent to v in

T. Choose x∗ as one of vertices xi. There is a path θ = [x∗, u1, u2,. . . ,ur, c] from
xi to c with length r ≤ k − 1. The tree T has an induced subtree H spanned by v,
xi, 1 ≤ i ≤ yk+1 and, uj, 1 ≤ j ≤ r. Hence, H is isomorphic to G(k, r, yk). Besides,
we know that a(T ) < a(H). From Lemma 5, a(H) < a(R(k, ℓ)) = ak,yk

= ak. So,
a(T ) < ak which is a contradiction.

Figure 8. A counter-example to the converse for Theorem 7.

The converse of the result above does not hold. Figure 8 displays a tree T
with ∆ = 4. In this case y4 = 6 and a(T ) = 0.11856 6= a4 = a(P9) = 0.12061.

From now on, we consider trees with fixed odd diameter 2k − 1 and the
number of vertices as a variable n ≥ 2k.
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Theorem 8. For k ≥ 2, let T be a tree with fixed odd diameter 2k − 1 and any

vertices n ≥ 2k. Let O be the class of all these trees. The path P2k is the unique

tree on such conditions that for every tree T, T ∈ O, a(T ) < a(P2k).

Proof. For k ≥ 2, let d = 2k − 1 be fixed diameter of all trees with any vertex
n ≥ 2k. Let On be the set of all such trees with fixed n . All we need to do is apply
Lemma 3, for each n ≥ 2k. For j, a natural number, define Tn,j to be the tree ∈ On

with j pendent vertices adjacent to the vertex
2k

2
in P2k. So, we have:

Fact 1. For every n, a(Tn,j) decreasing with j, see Fallat and Kirkland [7];

Fact 2. From Lemma 3, the tree T2k,0 is equal to the path P2k−1. So, a(T2k,0) =
a(P2k−1);

Fact 3. Let be Tn any tree with n vertices and diameter 2k − 1, implicitly in the
proof of Lemma 3, in [7], a(Tn,j) > a(Tn).

From these facts above, for every T ∈ O, we get a(P2k−1) > a(T ).

Final considerations. Among all trees with fixed diameter 2k−1 and any number
of vertices, Theorem 8 proves that the path P2k is the only one with maximum
algebraic connectivity. However, for the case of fixed even diameter, according to
Lemma 2, Theorems 5 and 6, there are infinite trees with n ≥ 2k+1 vertices and the
same algebraic connectivity that P2k+1 which maximize the algebraic connectivity
over all such trees. All these trees are dp-trees. Finally, Proposition 3 determines
an infinite number of Type I trees with two centroids as an answer to the question
proposed in 1987 by Merris, [22].
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