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TOTAL ROMAN DOMINATION IN GRAPHS

Hossein Abdollahzadeh Ahangar, Michael A. Henning,
Vladimir Samodivkin, Ismael G. Yero

A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2}
satisfying the condition that every vertex u for which f(u) = 0 is adjacent to
at least one vertex v for which f(v) = 2. The weight of a Roman dominating
function f is the sum,

∑
u∈V (G) f(u), of the weights of the vertices. The

Roman domination number is the minimum weight of a Roman dominating
function in G. A total Roman domination function is a Roman dominating
function with the additional property that the subgraph of G induced by the
set of all vertices of positive weight has no isolated vertex. The total Roman
domination number is the minimum weight of a total Roman domination
function on G. We establish lower and upper bounds on the total Roman
domination number. We relate the total Roman domination to domination
parameters, including the domination number, the total domination number
and Roman domination number.

1. INTRODUCTION

A dominating set in a graph G with vertex set V (G) is a set S of vertices
of G such that every vertex in V (G) \ S is adjacent to at least one vertex in S.
The domination number of G, denoted by γ(G), is the minimum cardinality of a
dominating set of G. A dominating set of G of cardinality γ(G) is called a γ(G)-set.
The literature on the subject of domination parameters in graphs up to the year
1997 has been surveyed and detailed in the two books [6, 7].

A total dominating set, abbreviated TD-set, of a graph G with no isolated
vertex is a set S of vertices of G such that every vertex in V (G) is adjacent to at
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least one vertex in S. The total domination number of G, denoted by γt(G), is the
minimum cardinality of a TD-set of G. A TD-set of G of cardinality γt(G) is called
a γt(G)-set. Total domination is now well studied in graph theory. The literature
on the subject of total domination in graphs has been surveyed and detailed in
the recent book [10]. A previous survey on total domination in graphs can also be
found in [9].

In this paper we continue the study of Roman dominating functions in graphs.
For a subset S ⊆ V (G) of vertices of a graph G and a function f : V (G) −→ R,

we define f(S) =
∑

x∈S

f(x). A Roman dominating function on a graph G, ab-

breviated RD-function, is a function f : V (G) → {0, 1, 2} satisfying the condi-
tion that every vertex u for which f(u) = 0 is adjacent to at least one ver-
tex v for which f(v) = 2. The weight, ω(f), of f is defined as f(V (G)). The
Roman domination number, denoted γR(G), is the minimum weight of an RD-
function in G; that is, γR(G) = min{ω(f) | f is an RD-function in G}. An RD-
function with minimum weight γR(G) in G is called a γR(G)-function. For an

RD-function f, let V f
i = {v ∈ V (G) : f(v) = i} for i = 0, 1, 2. Since these three

sets determine f, we can equivalently write f = (V f
0 , V f

1 , V f
2 ). We observe that

ω(f) = |V f
1 |+2|V f

2 |. The concept of a Roman dominating function was first defined
by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [3] and was motivated
by an article in Scientific American by Ian Stewart entitled “Defend the Ro-
man Empire” [16]. Roman domination in graphs is now very well studied, see, for
example, [1, 2, 4, 11, 12, 14, 15, 17] and elsewhere.

Recently, Liu and Chang [13] introduced the concept of total Roman dom-
ination in graphs albeit in a more general setting. A total Roman dominating

function of a graph G with no isolated vertex, abbreviated TRD-function, is a Ro-
man dominating function f = (V f

0 , V f
1 , V f

2 ) on G with the additional property that

the subgraph of G induced by the set of all vertices V f
1 ∪ V f

2 of positive weight
under f has no isolated vertex. The total Roman domination number γtR(G) is the
minimum weight of an TRD-function on G. A TRD-function with minimum weight
γtR(G) in G is called a γtR(G)-function.

Applications of Roman domination were shown in Chambers et al. [2]. The
concept of total Roman domination in graphs requires that every vertex in our
graph (which represents a location in the Roman Empire) be secure in the sense
that it is required to have a legion stationed in at least one of its neighboring
locations. Thus, any location if attacked can be secured by sending a legion to it
from an adjacent location. In the original paper by Liu and Chang [13] where the
concept was introduced, algorithmic aspects of total Roman domination in graphs
are studied.

Since every TRD-function in a graph G is a RD-function on G, we have the
following straightforward observation.

Observation 1. For every graph G with no isolated vertex, γR(G) ≤ γtR(G).

Moreover, we shall need the following properties of TRD-functions in a graph.
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Observation 2. Let G be a connected graph of order at least 3 and let f =
(V f

0 , V f
1 , V f

2 ) be a γtR(G)-function. Then the following holds.

(a) |V f
2 | ≤ |V f

0 |.

(b) If x is a leaf and y a support vertex in G, then x /∈ V f
2 and y /∈ V f

0 .
(c) If z has at least three leaf-neighbors, then f(z) = 2 and at most one

leaf-neighbor of z belongs to V f
1 .

In this paper, we relate the total Roman domination to domination parame-
ters, including the domination number, the total domination number and Roman
domination number. Further, we characterize the graphs with largest possible total
Roman domination number, namely the order of the graph.

1.1. Notation

For basic notation and graph theory terminology not explicitly defined here,
we in general follow Haynes, Hedetniemi and Slater [6]. Specifically, let G
be a graph with vertex set V (G) and edge set E(G). The integers n(G) = |V (G)|
and m(G) = |E(G)| are the order and the size of G, respectively. The open

neighborhood of a vertex v in G is the set NG(v) = {u ∈ V (G) |uv ∈ E(G)} and
the closed neighborhood of v is NG[v] = {v} ∪NG(v). For a set S ⊆ V (G), its open
neighborhood is the set NG(S) =

⋃
v∈S NG(v), and its closed neighborhood is the set

NG[S] = NG(S)∪S. The boundary of a set S ⊆ V (G) is the set ∂(S) = NG(S) \S.
The S-external private neighborhood of a vertex v ∈ S is defined by epn(v, S) =
{w ∈ V (G) \ S | NG[w] ∩ S = {v}}. We define an S-external private neighbor of
v to be a vertex in epn(v, S). If the graph G is clear from the context, we omit it
in the above expressions. For example, we write N [v] and N(v) rather than NG[v]
and NG(v), respectively.

If X and Y are sets of vertices in G, then X dominates Y if Y ⊆ N [X ] and
X totally dominates Y if Y ⊆ N(X). In particular, if X dominates V (G), then X
is a dominating set in G, while if X totally dominates V (G), then X is a TD-set
in G.

A packing in G is a set of vertices that are pairwise at distance at least 3
apart; that is, if u and v are distinct vertices that belong to a packing S, then
dG(u, v) ≥ 3. Equivalently, a set S of vertices of G is a packing in G if the closed
neighborhoods of vertices in S are pairwise disjoint.

The degree of a vertex v inG is dG(v) = |NG(v)|. The minimum and maximum
degree of a graph G are denoted by δ(G) and ∆(G), respectively. For a set S ⊆
V (G), the subgraph induced by S is denoted by G[S]. A leaf of G is a vertex of
degree 1, while a support vertex of G is a vertex adjacent to a leaf. We denote by
L(G) and S(G) the set of leaves and support vertices in G, respectively. An edge
incident with a leaf is a pendant edge. A strong support vertex is a support vertex
with at least two leaf-neighbors. If A and B are vertex disjoint sets in G, we denote
by [A,B] the set of edges of G with one end in A and the other end in B.

A tree obtained from a star on at least three vertices by subdividing every
edge exactly once is called a subdivided star. A tree containing exactly two vertices
that are not leaves (which are necessarily adjacent) is called a double star. The
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corona of a graph H, denoted cor(H) or H ◦ K1 in the literature, is the graph
obtained from H by adding a pendant edge to each vertex of H. We remark that
the Roman domination number (among other domination parameters) of the gen-
eralized version of corona graphs has been studied in [5]. We use the standard
notation [k] = {1, 2, . . . , k}.

2. TOTAL ROMAN DOMINATION VERSUS (TOTAL, ROMAN)
DOMINATION

In this section, we relate the total Roman domination with some standard
domination parameters, including the ordinary domination number, the Roman
domination number, and the total domination number.

2.1. Total Roman domination versus domination

We begin with the following useful property of total Roman dominating func-
tions.

Lemma 3. If G is a graph with no isolated vertex, then there exists a γtR(G)-

function f = (V f
0 , V f

1 , V f
2 ) such that either V f

2 is a dominating set in G, or the

set S of vertices not dominated by V f
2 satisfies G[S] = kK2 for some k ≥ 1, where

S ⊆ V f
1 and ∂(S) ⊆ V f

0 .

Proof. Suppose that there is no γtR(G)-function f ′ = (V f ′

0 , V f ′

1 , V f ′

2 ) such that

V f ′

2 is a dominating set in G. Among all γtR(G)-functions, let f = (V f
0 , V f

1 , V f
2 ) be

chosen so that |V f
1 | achieves a minimum value. Since f is a TRD-function, the set

V f
2 dominates V f

0 . Further, the graph G[V f
1 ∪ V f

2 ] contains no isolated vertex. Let

V f
12 be the set of vertices in V f

1 that have a neighbor in V f
2 , and let V f

11 = V f
1 \V f

12.

By supposition, V f
2 is not a dominating set of G, implying that the set of vertices

not dominated by V f
2 , namely V f

11, is non-empty.

Among all vertices in V f
11, let v be one of minimum degree in G[V f

11]. We

show firstly that v has degree 1 in G[V f
11]. If v is isolated in G[V f

11], let w be an

arbitrary neighbor of v in V f
1 ∪ V f

2 and note that w ∈ V f
12. If v has degree at

least 2 in G[V f
11], let w be an arbitrary neighbor of v in V f

11. In both cases, let
f ′ : V (G) → {0, 1, 2} be defined as follows: f ′(v) = 0, f ′(w) = 2 and f ′(u) = f(u)
for every vertex u /∈ {v, w}. By our choice of the vertices v and w, the function f ′

is a TRD-function of G. Moreover, since f(v)+ f(w) = f ′(v)+ f ′(w), we note that

f ′(V (G)) = f(V (G)), implying that f ′ = (V f
0 ∪ {v}, V f

1 \ {v, w}, V f
2 ∪ {w}) is a

γtR(G)-function. However, the number of vertices having the value 1 under f ′ is

less than |V f
1 |, contradicting our choice of f. Hence, the vertex v has degree 1 in

G[V f
11].

Let w be the neighbor of v in V f
11. If w has degree at least 2 in G[V f

1 ∪ V f
2 ],

then the function f ′ defined as before is once again a minimum TRD-function of
G, contradicting our choice of f. Hence, w has degree 1 in G[V f

1 ∪ V f
2 ]. If v has
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degree at least 2 in G[V f
1 ∪ V f

2 ] (implying that v has a neighbor in V f
12), then the

function g : V (G) → {0, 1, 2} defined by g(v) = 2, g(w) = 0 and g(u) = f(u) for
every vertex u /∈ {v, w} is a minimum TRD-function of G that assigns the value 1

to fewer than |V f
1 | vertices, contradicting our choice of f. Hence, v has degree 1

in G[V f
1 ∪ V f

2 ]. Therefore, v and w induce a K2-component in G[V f
1 ∪ V f

2 ]; that

is, G[{v, w}] = K2. In particular, N(v) \ {w} ⊆ V f
0 and N(w) \ {v} ⊆ V f

0 . Thus,

∂({v, w}) = N({v, w}) \ {v, w} ⊆ V f
0 . Since v is an arbitrary vertex of degree 1

in G[V f
11], we deduce that the vertices of degree 1 in G[V f

11] induce a subgraph in

G[V f
1 ∪ V f

2 ] that consists of the vertex disjoint union of copies of K2.

We show next that every component of G[V f
11] is a K2-component. Suppose,

to the contrary, that G[V f
11] contains a component H that is not a K2-component.

As observed earlier, no vertex is isolated in G[V f
11] and every vertex of degree 1

in G[V f
11] belongs to a K2-component of G[V f

1 ∪ V f
2 ]. Thus, every vertex of H has

degree at least 2. We now let v′ be a vertex of minimum degree in H. We note that
dH(v′) ≥ 2. Let w′ be an arbitrary neighbor of v′ in H. Let h : V (G) → {0, 1, 2}
be defined as follows: h(v′) = 0, h(w′) = 2 and h(u) = f(u) for every vertex

u /∈ {v′, w′}. Then, h = (V f
0 ∪ {v′}, V f

1 \ {v′, w′}, V f
2 ∪ {w′}) is a γtR(G)-function

that assigns the value 1 to fewer than |V f
1 | vertices, contradicting our choice of f.

Therefore, every component of G[V f
11] is a K2-component which is in fact a K2-

component of G[V f
1 ∪ V f

2 ]. From our earlier observations, this implies that letting

S = V f
11 we have G[S] = kK2 for some k ≥ 1, S ⊆ V f

1 , and ∂(S) ⊆ V f
0 . This

completes the proof of Lemma 3.

We are now in a position to relate the total Roman domination and the
ordinary domination number.

Theorem 4. If G is a graph with no isolated vertex, then 2γ(G) ≤ γtR(G). Further,
if 2γ(G) = γtR(G), then γ(G) = γt(G) or there exists a set S of vertices of G such

that the following holds.

(a) G[S] = kK2 for some k ≥ 1.
(b) γ(G− S) = γt(G− S).
(c) No neighbor of a vertex of S in G belongs to a γt(G− S)-set.

Proof. By Lemma 3, there exists a γtR(G)-function f = (V f
0 , V f

1 , V f
2 ) such that

either V f
2 is a dominating set of G or the set S of vertices not dominated by V f

2

satisfies G[S] = kK2 for some k ≥ 1, S ⊆ V f
1 , and ∂(S) ⊆ V f

0 . If V f
2 is a dominating

set of G, then γ(G) ≤ |V f
2 | ≤

1

2
f(V (G)) =

1

2
γtR(G). If V f

2 is not a dominating

set of G, then the set V f
2 is a dominating set of G − S and can be extended to a

dominating set of G by adding to it one vertex from each K2-component of G[S].

In this case, γtR(G) = f(V (G)) = 2|V f
2 | + |V f

1 | ≥ 2|V f
2 | + |S|, implying that

γ(G) ≤ γ(G − S) +
1

2
|S| ≤ |V f

2 | +
1

2
|S| ≤

1

2
γtR(G). This establishes the desired

upper bound on 2γ(G).
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Suppose that γtR(G) = 2γ(G). Let f = (V f
0 , V f

1 , V f
2 ) be a γtR(G)-function

chosen so that |V f
1 | is a minimum. As shown in the proof of Lemma 3, the

set V f
2 is a dominating set of G or the set S of vertices not dominated by V f

2

satisfies G[S] = kK2 for some k ≥ 1, where S ⊆ V f
1 and ∂(S) ⊆ V f

0 . Sup-

pose that V f
2 is a dominating set of G. Then, as observed earlier,

1

2
γtR(G) =

γ(G) ≤ |V f
2 | ≤

1

2
f(V (G)) =

1

2
γtR(G). Hence we must have equality throughout

this inequality chain. In particular, γ(G) = |V f
2 | and f(V (G)) = 2|V f

2 |, imply-

ing that V f
1 = ∅. This in turn implies that the set V f

2 is a TD-set in G, and so

|V f
2 | = γ(G) ≤ γt(G) ≤ |V f

2 |. Consequently, we must have equality throughout this

inequality chain, implying that γ(G) = γt(G). Hence we may assume that V f
2 is

not a dominating set of G, for otherwise the desired result follows. In this case,
the set S of vertices not dominated by V f

2 satisfies G[S] = kK2 for some k ≥ 1.

Further, S ⊆ V f
1 and ∂(S) ⊆ V f

0 . Thus, Part (a) follows readily.

As observed earlier,
1

2
γtR(G) = γ(G) ≤ γ(G − S) +

1

2
|S| ≤ |V f

2 | +
1

2
|S| ≤

1

2
γtR(G). Hence we must have equality throughout this inequality chain. In particu-

lar, γ(G−S) = |V f
2 | and γtR(G) = 2|V f

2 |+|S|. We show next that |V f
2 | = γt(G−S).

The set V f
2 is a TD-set of G − S, and so γt(G − S) ≤ |V f

2 |. Conversely, if D is a
γt(G−S)-set, then the function g : V (G) → {0, 1, 2} defined as follows: g(v) = 2 if
v ∈ D, g(v) = 1 if v ∈ S, and g(v) = 0 for every vertex u /∈ D∪S is a TRD-function

of G, implying that 2|V f
2 |+|S| = γtR(G) ≤ g(V (G)) = 2|D|+|S| = 2γt(G−S)+|S|,

and so |V f
2 | ≤ γt(G − S). Consequently, |V f

2 | = γt(G − S). As observed earlier,

|V f
2 | = γ(G− S). Consequently, γ(G− S) = γt(G− S). This establishes Part (b).

It remains to show that no neighbor of a vertex of S in G belongs to a
γt(G − S)-set. Suppose, to the contrary, that there is a γt(G − S)-set, D∗, that
contains a vertex that is adjacent in G to a vertex of S, say v1. Recall that G[S] =
kK2 for some k ≥ 1. Let v2 be the neighbor of v1 that belongs to S.We now consider
the function f∗ : V (G) → {0, 1, 2} defined as follows: f∗(v) = 2 if v ∈ D∗ ∪ {v1},
f∗(v) = 1 if v ∈ S \ {v1, v2}, and f∗(u) = f(u) for every vertex u /∈ D∗ ∪ {v1, v2}.
The function f∗ is a TRD-function of G satisfying f∗(V (G)) = f(V (G)), implying
that f∗ is a γtR(G)-function. However, the vertices assigned the value 1 under f∗

is equal to |S| − 2 = |V f
1 | − 2, contradicting our choice of f. Hence, there is no

γt(G−S)-set that contains a vertex adjacent in G to a vertex of S. This establishes
Part (c) and completes the proof of Theorem 4.

Theorem 5. If G is a graph with no isolated vertex, then γtR(G) ≤ 3γ(G). Further,
if γtR(G) = 3γ(G), then every γ(G)-set is a packing in G.

Proof. Let S be a minimum dominating set in G. Let S′ denote the set of vertices
in S that are isolated in G[S] (possibly, S′ = ∅). For each vertex v ∈ S′, we select
one neighbor of v and denote it by v′. Let S′′ = ∪v∈S′{v′}. Let f : V (G) → {0, 1, 2}
be defined as follows. For each vertex v ∈ S, let f(v) = 2. For each vertex v ∈ S′′,
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let f(v) = 1. For each vertex v ∈ V (G) \ (S ∪ S′′), let f(v) = 0. Then, f is a
TRD-function on G, implying that γtR(G) ≤ f(V (G)) ≤ 2|S|+ |S′′| ≤ 2|S|+ |S′| ≤
3|S| = 3γ(G). This establishes the desired upper bound on γtR(G).

Suppose next that γtR(G) = 3γ(G). Let S be an arbitrary γ(G)-set and let S′

and S′′ be as defined earlier in the proof. As observed earlier, 3γ(G) = γtR(G) ≤
2|S| + |S′′| ≤ 2|S| + |S′| ≤ 3|S| = 3γ(G). Consequently, we must have equality
throughout this inequality chain. In particular, |S′| = |S|, implying that S′ = S
and therefore that S is an independent set. Further, |S′′| = |S′|. Let u and v be
distinct vertices in S. Since S is an independent set, dG(u, v) ≥ 2. We show that
dG(u, v) ≥ 3. Suppose, to the contrary, that dG(u, v) = 2. Let w be a common
neighbor of u and v, and choose u′ = v′ = w where, as before, u′ and v′ are the
vertices chosen to be adjacent to u and v, respectively. With this choice of u′ and
v′, we note that |S′′| < |S′|, a contradiction. Therefore, dG(u, v) ≥ 3. This is true
for every pair of distinct vertices in S, implying that S is a packing in G. Thus,
every γ(G)-set is a packing in G.

We remark that the upper bound of Theorem 5 is sharp. For example, for
k ≥ 2, let G be obtained from the disjoint union of k stars K1,t, where t ≥ 3, by
selecting one leaf from each star and adding any number of edges joining these t
selected leaves so that the resulting graph is connected. Then, γ(G) = k and the set
of k support vertices of G form the unique γ(G)-set (which we observe is a packing
in G). Let f : V (G) → {0, 1, 2} be a TRD-function of G and consider a central
vertex v of one of the original stars used to construct G. If f(v) ≤ 1, then every
leaf-neighbor of v in G has value at least 1 under f, implying that f([N [v]) ≥ t ≥ 3.
If f(v) = 2, then at least one neighbor of v is assigned a positive value under f,
once again implying that f([N [v]) ≥ 3. This is true for each of the k central vertices
of the original stars. Therefore, f(V (G)) ≥ 3k. This is true for every TRD-function
f of G, implying that γtR(G) ≥ 3k = 3γ(G). As shown earlier, γtR(G) ≤ 3γ(G)
holds for every graph. Consequently, γtR(G) = 3γ(G).

It remains an open problem to find a necessary and sufficient condition for
equality to hold in Theorem 5. We remark that if G is a graph with no isolated
vertex such that every γ(G)-set is a packing in G, then it is not necessarily true
that γtR(G) = 3γ(G). For example, for k ≥ 3, suppose that Gk is obtained from a
star K1,k with central vertex v by subdividing k − 1 edges twice and subdividing
the remaining edge exactly once. Then, γ(Gk) = k and the set of k support vertices
of Gk form the unique γ(Gk)-set which is a packing in Gk. However, the function
f : V (Gk) → {0, 1, 2} that assigns the value 1 to
every leaf and to every support vertex, the value 2
to v, and the value 0 to the remaining vertices of
Gk is a TRD-function of Gk of weight 2k + 2,
and so γtR(Gk) ≤ 2(k + 1) < 3k = 3γ(Gk). The
graph G4, for example is illustrated in Figure 1,
where the darkened vertices form a γ(G4)-set and
the given function f is a TRD-function of G4 of
weight 2(k + 1) = 10.

Figure 1. The graph G4.
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2.2. Total Roman domination versus total domination

In this section, we relate the total Roman domination and the total domina-
tion number.

Theorem 6. If G is a graph with no isolated vertex, then

(1) γt(G) ≤ γtR(G) ≤ 2γt(G).

Further, the following holds.

(a) γt(G) = γtR(G) if and only if G is the disjoint union of copies of K2.
(b) If γtR(G) = 2γt(G) and S is an arbitrary γt(G)-set, then epn(v, S) 6= ∅

for all v ∈ S.

Proof. Let f = (V f
0 , V f

1 , V f
2 ) be an arbitrary γtR(G)-function. Then, V f

1 ∪ V f
2 is

a TD-set of G, implying that γt(G) ≤ |V f
1 | + |V f

2 | ≤ |V f
1 | + 2|V f

2 | = γtR(G). This
establishes the lower bound in the statement of the theorem. Suppose that γt(G) =
γtR(G). Then we must have equality throughout this inequality chain. In particular,

V f
2 = ∅, implying that V (G) = V f

1 . Since f is an arbitrary γtR(G)-function, this
implies that (∅;V (G); ∅) is the only γtR(G)-function. Let P : v1v2 . . . vk be a longest
path in G. We note that all neighbors of v1 belong to P. If k ≥ 3, then the function
f ′ = ({v1}, V (G) \ {v1, v2}, {v2}) is a γtR(G)-function, contradicting our earlier
observation that (∅;V (G); ∅) is the only γtR(G)-function. Therefore, k = 2 and G
is the disjoint union of copies of K2. Conversely, if G is the disjoint union of copies
of K2, then it is immediate that γt(G) = γtR(G) = |V (G)|. This completes the
proof of Part (a).

The upper bound follows immediately from the observation that assign-
ing a weight of 2 to each vertex of a given γt(G)-set and assigning a weight
of 0 to all remaining vertices of G yields a TRD-function on G, implying that
γtR(G) ≤ 2γt(G). Suppose that γtR(G) = 2γt(G) and let S be an arbitrary
γt(G)-set. Suppose, to the contrary, that epn(v, S) = ∅ for some vertex v ∈ S.
The function f = (V (G) \ S, {v}, S \ {v}) is a TRD-function of G, implying that
γtR(G) ≤ f(V (G)) = 1 + 2(|S| − 1) < 2|S| = 2γt(G), a contradiction. Therefore,
epn(v, S) 6= ∅ for all v ∈ S. This proves Part (b).

By Theorem 6, if G is a graph with no isolated vertex, then γtR(G) ≥ γt(G).
Further, γtR(G) = γt(G) if and only if G is the disjoint union of copies of K2. We
next characterize the connected graphs G satisfying γtR(G) = γt(G) + 1.

Proposition 7. Let G be a connected graph of order n ≥ 3. Then, γtR(G) =
γt(G) + 1 if and only if ∆(G) = n− 1.

Proof. Suppose that γtR(G) = γt(G) + 1. By Lemma 3, there exists a γtR(G)-

function f = (V f
0 , V f

1 , V f
2 ) such that either V f

2 is a dominating set of G or the set

S of vertices not dominated by V f
2 satisfies G[S] = kK2 for some k ≥ 1, S ⊆ V f

1 ,

and ∂(S) ⊆ V f
0 . If V f

2 = ∅, then V (G) = S and G = G[S] is a disjoint union

of copies of K2. But then γtR(G) = n = γt(G), a contradiction. Hence, V f
2 6= ∅.
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Since V f
1 ∪ V f

2 is a TD-set of G, we note that γtR(G)− 1 = γt(G) ≤ |V f
1 |+ |V f

2 | ≤

|V f
1 | + 2|V f

2 | − 1 = γtR(G) − 1. Hence, we must have equality throughout this

inequality chain. In particular, |V f
2 | = 2|V f

2 | − 1, and so |V f
2 | = 1. Let V f

2 = {v}.

We show that V f
2 is a dominating set of G. Suppose, to the contrary, that

V f
2 is not a dominating set of G and consider the set S of vertices not dominated

by V f
2 . Since ∂(S) ⊆ V f

0 , there must be a vertex in V f
1 \ S that is adjacent to v.

Using the notation employed in the proof of Lemma 3, let V f
12 be the set of vertices

in V f
1 that have a neighbor in V f

2 . In our case, every vertex in V f
12 is a neighbor

of v. If |V f
12| ≥ 2, then removing all but one vertex from V f

12 and adding it to

the set V f
0 produces a new TRD-function of G of weight less that f(V (G)), a

contradiction. Hence, |V f
12| = 1. Thus, γtR(G) = |S| + |V f

12| + 2|V f
2 | = |S| + 3.

Recall that G[S] = kK2 for some k ≥ 1. Let C denote the set of k components of
G[S] and let F ∈ C be an arbitrary K2-component in G[S]. Since G is connected,
there is a vertex vF in V (G)\V (F ) that is adjacent to a vertex of V (F ) in G. Since

∂(S) ⊆ V f
0 , we note that vF ∈ V f

0 and therefore vF is adjacent to v in G. Let uF

be a vertex in V (F ) that is adjacent to vF in G and let

S′ =
⋃

F∈C

{uF , vF }.

The set S′ ∪ {v} is a TD-set of G, implying that γt(G) ≤ |S′| + 1 ≤ |S| + 1 =

γtR(G) − 2, a contradiction. Therefore, V f
2 is a dominating set of G. As observed

earlier, V f
2 = {v}. The vertex v is therefore a dominating vertex of G (in the sense

that it dominates V (G)), implying that ∆(G) = n−1. Conversely, if ∆(G) = n−1,
then γt(G) = 2 and γtR(G) = 3. Thus, γtR(G) = γt(G) + 1.

Cockayne et al. [3] established the following relationship between the dom-
ination number and the Roman domination number of a graph: For every graph G,

(2) γ(G) ≤ γR(G) ≤ 2γ(G).

The graphs G satisfying γ(G) = γR(G) were characterized in [3]. A graph
G for which γR(G) = 2γ(G) is defined in [3] to be a Roman graph. While the
class of Roman trees has been characterized in [8], it remains an open problem to
characterize Roman graphs in general. We now define an analogous concept for
the total Roman domination number and define a graph G to be a total Roman

graph if γtR(G) = 2γt(G). Examples of total Roman graphs include the corona,
cor(H), of a graph H with no isolated vertex and cycles or paths on n vertices
where n ≡ 0 (mod 4).

We present next a trivial necessary and sufficient condition for a graph to be
a total Roman graph.

Proposition 8. Let G be a graph without isolated vertices. Then, G is a total

Roman graph if and only if there exists a γtR(G)-function f = (V f
0 , V f

1 , V f
2 ) such

that V f
1 = ∅.
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Proof. Suppose that G is a total Roman graph. Let S be an arbitrary γt(G)-set.

As observed in the proof of Theorem 6(b), the function f = (V f
0 , V f

1 , V f
2 ) that

assigns a weight of 2 to each vertex of S and a weight of 0 to all remaining vertices
of G is a TRD-function on G, and so 2γt(G) = γtR(G) ≤ f(V (G)) = 2|V f

2 | =
2|S| = 2γt(G). Hence, we must have equality throughout this inequality chain. In

particular, γtR(G) = f(V (G)), implying that f is a γtR(G)-function satisfying V f
1 =

∅. Conversely, suppose there exists a γtR(G)-function g = (V g
0 , V

g
1 , V

g
2 ) satisfying

V g
1 = ∅. Since the set V g

1 ∪V g
2 = V g

2 is a TD-set of G, we note that γt(G) ≤ |V g
2 | =

1

2
γtR(G), or, equivalently, 2γt(G) ≤ γtR(G). By Theorem 6, γtR(G) ≤ 2γt(G) for

all graphsG. Consequently, γtR(G) = 2γt(G), and so G is a total Roman graph.

It remains an open problem to find a nontrivial necessary and sufficient con-
dition for a graph to be a total Roman graph, or to characterize the total Roman
graphs. Recall that by Theorem 6(b), if G is a total Roman graph and S is an arbi-
trary γt(G)-set, then epn(v, S) 6= ∅ for all v ∈ S. However this condition is not suf-
ficient for a graph to be a total Roman graph. For example, for k ≥ 3, suppose that
Hk is obtained from a starK1,k with central vertex v by subdividing k−1 edges three
times and subdividing the remaining edge exactly twice. Let A be the set k support
vertices in Hk and let B be the set of vertices of degree 2 in Hk that are adjacent to
a support vertex. Then, γt(Hk) = 2k and the set S = A ∪B is the unique γt(Hk)-
set. We note that epn(v, S) 6= ∅ for all v ∈ S. However, the function f : V (Hk) →
{0, 1, 2} that assigns the value 0 to every leaf, the value 2 to every vertex in A, the
value 1 to every vertex in B, the value 2
to v, and the value 0 to the remaining
vertices of Hk is a TRD-function of Hk

of weight 3k+2, and so γtR(Hk) ≤ 3k+
2 < 4k = 2γt(Hk). The graph H4, for
example is illustrated in Figure 2, where
the darkened vertices form a γt(H4)-
set and the given function f is a TRD-
function of H4 of weight 3k + 2 = 14.

Figure 2. The graph H4.

Recall that for every graph G with no isolated vertex, γ(G) ≤ γt(G) ≤

2γ(G). Let G be a total Roman graph. If γt(G) >
3

2
γ(G), then by Theorem 5, we

note that
3

2
γ(G) < γt(G) =

1

2
γtR(G) ≤

3

2
γ(G), a contradiction. Hence, γt(G) ≤

3

2
γ(G). Further, suppose that γtR(G) = γR(G). By Inequality (2), we note then

that 2γ(G) ≥ γR(G) = γtR(G) = 2γt(G) ≥ 2γ(G). Hence, we must have equality
throughout this inequality chain. In particular, 2γ(G) = γR(G), implying that G
is a Roman graph. We state these observations formally as follows.

Observation 9. If G is a total Roman graph, then γt(G) ≤
3

2
γ(G). Further, if

γtR(G) = γR(G), then G is a Roman graph.

We remark that the upper bound in Observation 9 is tight, as may be seen
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by taking G to be a path P12k where k ≥ 1. In this case, G is a total Roman graph,

γt(G) = 6k, and γ(G) = 4k, implying that γt(G) =
3

2
γ(G).

Suppose that G is a Roman graph and γ(G) = γt(G). Then, by Inequality (1),
we note that 2γt(G) = 2γ(G) = γR(G) ≤ γtR(G) ≤ 2γt(G). Hence, we must have
equality throughout this inequality chain. In particular, γR(G) = 2γt(G), implying
that G is a total Roman graph. We state this observation formally as follows.

Observation 10. If G is a Roman graph and γ(G) = γt(G), then G is a total

Roman graph.

2.3. Total Roman domination versus Roman domination

In this section we relate the total Roman domination number and the Roman
domination number. By Observation 1, for every graph G with no isolated vertex,
γR(G) ≤ γtR(G). We establish next an upper bound on the total Roman domination
number in terms of the Roman domination number.

Theorem 11. If G is a graph of order n with no isolated vertex, then γtR(G) ≤
2γR(G)− 1. Further, γtR(G) = 2γR(G)− 1 if and only if ∆(G) = n− 1.

Proof. Among all γR(G)-functions, let f = (V f
0 , V f

1 , V f
2 ) be chosen so that |V f

2 |

is a maximum. Suppose firstly that V f
1 6= ∅. If some vertex in V f

1 is adjacent to

a vertex in V f
2 , then we can simply re-assign it a weight of 0 to produce a new

RD-function of weight less than f(V (G)), a contradiction. Hence, no vertex in

V f
1 is dominated by V f

2 . We show that V f
1 is an independent set in G. Suppose,

to the contrary, that u and v are adjacent vertices in V f
1 . Then, f ′ = (V f

0 , V f
1 \

{u, v}, V f
2 ∪{v}) is a RD-function of G. Moreover, since f(u)+f(v) = f ′(u)+f ′(v),

we note that f ′(V (G)) = f(V (G)), implying that f ′ is a γR(G)-function. However,

the vertices assigned the value 2 under f ′ exceeds |V f
2 |, contradicting our choice of

f. Hence, V f
1 is an independent set in G. We show next that V f

1 is a packing in G.

Suppose, to the contrary, that u and v are two distinct vertices in V f
1 at distance 2

apart. Let w be a common neighbor of u and v. Since V f
1 is an independent set

and since neither u nor v are dominated by V f
2 , we note that w ∈ V f

0 . In this

case, we let f ′ = ((V f
0 \ {w}) ∪ {u, v}, V f

1 \ {u, v}, V f
2 ∪ {w}) and note that f ′ is

a RD-function of G. Moreover, since f(u) + f(v) + f(w) = f ′(u) + f ′(v) + f ′(w),
we note that f ′(V (G)) = f(V (G)), implying that f ′ is a γR(G)-function. However,

the vertices assigned the value 2 under f ′ exceeds |V f
2 |, once again a contradiction.

Therefore, V f
1 is a packing in G.

As observed earlier, no vertex in V f
1 is dominated by V f

2 . Further, V f
1 is a

packing in G. Thus, all neighbors of a vertex in V f
1 belong to V f

0 . For each vertex

w ∈ V f
1 , we select an arbitrary neighbor, w′, of w and we let W = ∪

w∈V
f
1
{w′}.

We note that |W | = |V f
1 | and W ⊆ V f

0 . Further, each vertex in W is adjacent to

at least one vertex in V f
2 , implying that |V f

2 | ≥ 1. We also observe that γR(G) =

|V f
1 |+2|V f

2 |.We now consider the function g = (V g
0 , V

g
1 , V

g
2 ) = (V f

0 \W,V f
1 ∪W,V f

2 ).



512 Ahangar, Henning, Samodivkin, Yero

Suppose that there are no isolated vertices in G[V g
1 ∪V g

2 ]. In this case, g is a TRD-
function of G, implying that

γtR(G) ≤ g(V (G)) = 2|V f
1 |+ 2|V f

2 | = 2γR(G)− 2|V f
2 | ≤ 2(γR(G) − 1).

Suppose that there are isolated vertices in G[V g
1 ∪ V g

2 ]. Let U be the set of
isolated vertices in G[V g

1 ∪V g
2 ]. Since G[V g

1 ] contains no isolated vertex, we note that

U ⊆ V f
2 . As observed earlier, each vertex in W is adjacent to at least one vertex in

V f
2 , implying that U ⊂ V f

2 . For each vertex u ∈ U, we select an arbitrary neighbor,

u′, of u and we let Z = ∪u∈U{u′}. We note that |Z| ≤ |U | < |V f
2 | and Z ⊆ V g

0 . We
now consider the function h = (V g

0 \Z, V g
1 ∪Z, V g

2 ). In this case, h is a TRD-function

of G, implying that γtR(G) ≤ h(V (G)) = g(V (G)) + |Z| ≤ g(V (G)) + |V f
2 | − 1.

Thus, since g(V (G)) = 2|V f
1 |+ 2|V f

2 |, we note that

γtR(G) ≤ 2|V f
1 |+ 3|V f

2 | − 1 < 2|V f
1 |+ 4|V f

2 | − 1 = 2γR(G) − 1.

Hence we may assume that V f
1 = ∅, for otherwise γtR(G) < 2γR(G) − 1

and the desired bound follows. Let U be the set of isolated vertices in G[V f
2 ]. If

U = ∅, then f is a TRD-function of G, implying that γtR(G) ≤ f(V (G)) = γR(G).
Consequently, by Observation 1, γtR(G) = γR(G). Hence we may assume that
U 6= ∅. For each vertex u ∈ U, we select an arbitrary neighbor, u′, of u and we let
U ′ = ∪u∈U{u′}. We note that |U ′| ≤ |U | ≤ |V f

2 |. We now consider the function

f ′ = (V f
0 \U ′, V f

1 ∪U ′, V f
2 ). The function f ′ is a TRD-function of G, implying that

γtR(G) ≤ f ′(V (G)) = f(V (G)) + |U ′| ≤ f(V (G)) + |V f
2 |. Thus, since in this case

f(V (G)) = 2|V f
2 |, we note that

γtR(G) ≤ 2|V f
2 |+ |V f

2 | =
3

2
γR(G) ≤ 2γR(G)− 1.

Further, if γtR(G) = 2γR(G) − 1, then γR(G) = 2, implying that |V f
2 | = 1

and ∆(G) = n − 1. Conversely, if ∆(G) = n − 1, then γtR(G) = 3 = 2γR(G) − 1,
which completes the proof.

3. GRAPHS WITH LARGE TOTAL ROMAN DOMINATION
NUMBER

In this section, we characterize the graphs with largest possible total Roman
domination number, namely the order of the graph. Let G be the family of graphs
that can be obtained from a 4-cycle v1v2v3v4v1 by adding k1+k2 ≥ 1 vertex-disjoint
paths P2 and joining v1 to the end of k1 such paths and joining v2 to the end of
k2 such paths (possibly, k1 = 0 or k2 = 0). Let H be the family of graphs that
can be obtained from a double star by subdividing each pendant edge once and
subdividing the non-pendant edge r ≥ 0 times. A graph G in the family G and a
graph H in the family H are illustrated in Figure 3(a) and 3(b), respectively.
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Figure 3. Graphs in the families G and H.

We show firstly that the total Roman domination number of a nontrivial path
or a cycle is the order of the path or cycle.

Proposition 12. If G is a nontrivial path or a cycle on n vertices, then γtR(G) =
n.

Proof. If G = P2, then the result is immediate. Hence we may assume that G = Pn

or G = Cn, where n ≥ 3. Let f = (V f
0 , V f

1 , V f
2 ) be a γtR(G)-function. Suppose

that there is a vertex v in V f
0 that is adjacent to two vertices u and w that both

belong to V f
2 . Thus, uvw is a path in G where f(v) = 0 and f(u) = f(w) =

2. Since G[V f
1 ∪ V f

2 ] contains no isolated vertices, dG(u) = dG(w) = 2 and the
neighbor of u (respectively, w) different from v in G has value at least 1 under f.
Let f ′ : V (G) → {0, 1, 2} be defined as follows: f ′(u) = f ′(v) = f ′(w) = 1 and
f ′(x) = f(x) for every vertex x /∈ {u, v, w}. Since f is a TRD-function of G, so too
is the function f ′.Moreover, since f ′(u)+f ′(v)+f ′(w) < f(u)+f(v)+f(w), we note

that f ′(V (G)) < f(V (G)) = γtR(G), a contradiction. Hence, every vertex in V f
0

is adjacent to exactly one vertex in V f
2 , and so |V f

0 | ≤ |V f
2 |. By Observation 2(a),

|V f
2 | ≤ |V f

0 |. Consequently, |V f
0 | = |V f

2 |. Therefore, γtR(G) = |V f
1 | + 2|V f

2 | =

|V f
0 |+ |V f

1 |+ |V f
2 | = n.

We are now in a position to state the following result.

Theorem 13. Let G be a connected graph of order n ≥ 2. Then, γtR(G) = n if

and only if one of the following holds.

(a) G is a path or a cycle.

(b) G is a corona, cor(F ), of some graph F.
(c) G is a subdivided star.

(d) G ∈ G ∪ H.

Proof. Suppose that γtR(G) = n. If ∆(G) ≤ 2, then G is a path or a cycle and
the result follows from Proposition 12. Hence we may assume that ∆(G) ≥ 3. In
particular, this implies that n ≥ 4. Let V (G) = V. We proceed further with a series
of claims that give us structural properties of the graph G.

Claim A. Every support vertex is adjacent to exactly one leaf.

Proof of Claim A. Suppose, to the contrary, that G contains a strong support
vertex v. Let u and w be two leaf-neighbors of v. Let f : V → {0, 1, 2} be defined
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as follows: f(u) = f(w) = 0, f(v) = 2, and f(x) = 1 for every vertex x /∈ {u, v, w}.
Then, f is a TRD-function of G, and so γtR(G) ≤ f(V ) = n−1, a contradiction. (�)

Claim B. If dG(v) ≥ 3 for some vertex v of G, then at most two neighbors of v
are not support vertices.

Proof of Claim B. Let v be a vertex of degree at least 3 in G, and let Nv =
{v1, v2, v3} be an arbitrary subset consisting of three neighbors of v. By Claim A,
at most one vertex in Nv is a leaf. Suppose, to the contrary, that no vertex of Nv

is a support vertex. Let f : V → {0, 1, 2} be defined as follows: f(v1) = f(v2) = 0,
f(v) = 2, and f(x) = 1 for every vertex x /∈ {v, v1, v2}. If f is a TRD-function of
G, then γtR(G) ≤ f(V ) = n− 1, a contradiction. Hence, f is not a TRD-function
of G, implying that there exists a vertex v12 such that NG(v12) ⊆ {v1, v2}. By
supposition, the vertex v12 is not a leaf. Thus, NG(v12) = {v1, v2}. Analogously,
there exists a vertex, v23 say, in G adjacent to both v2 and v3 but to no other vertex
in G. Let g : V → {0, 1, 2} be defined as follows: g(v12) = g(v23) = 0, f(v2) = 2,
and f(x) = 1 for every vertex x /∈ {v2, v12, v23}. Then, g is a TRD-function of G,
and so γtR(G) ≤ g(V ) = n− 1, a contradiction. (�)

As an immediate consequence of Claim B, δ(G) = 1. If every vertex of G is
a leaf or a support vertex, then G is a corona, cor(H), of some graph H. Hence we
may assume that at least one vertex of G is neither a leaf nor a support vertex. Let
L = L(G) and S = S(G) denote the set of leaves and support vertices, respectively,
in G. LetW = V \(L∪S). By assumption, W 6= ∅. Let H = G[W ]. As an immediate
consequence of Claim B, every vertex in W has at most two neighbors in W. We
state this formally as follows.

Claim C. ∆(H) ≤ 2.

Claim D. Every support vertex in G has degree 2.

Proof of Claim D. By the connectivity of G, there is at least one edge in [S,W ]
that joins a vertex of S and a vertex of W. Let vw ∈ E(G), where v ∈ S and w ∈ W.
By Claim A, every support vertex is adjacent to exactly one leaf. Let v′ be the
leaf-neighbor of v. We show that the support vertex v has degree 2. Suppose, to
the contrary, that v has degree at least 3 in G. Let u be a neighbor of v different
from v′ and w. By Claim B, the vertex u is a support vertex. Let u′ be the leaf-
neighbor of u. Let f : V → {0, 1, 2} be defined as follows: f(u′) = f(v′) = f(w) = 0,
f(v) = f(u) = 2, and f(x) = 1 for every vertex x /∈ {u, u′, v, v′, w}. Then, f is a
TRD-function of G, and so γtR(G) ≤ f(V ) = n − 1, a contradiction. Therefore,
NG(v) = {v′, w} and dG(v) = 2. Hence, every support vertex of G that is adjacent
to a vertex of W has degree 2 in G. By the connectivity of G, this implies that
every support vertex of G has degree 2. (�)

By Claim D, every support vertex inG has degree 2. Thus, by the connectivity
of G, the graph H is necessarily connected. We state this formally as follows.
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Claim E. H is connected.

Let WS be the set of vertices in W that are adjacent to a (support) vertex in
S. By Claim C, ∆(H) ≤ 2.

Claim F. If w ∈ WS has degree 2 in H, then the two neighbors of w in H are not

adjacent and G−NH(w) has exactly one isolated vertex.

Proof of Claim F. Let w ∈ WS and suppose that dH(w) = 2. Let NH(w) =
{w1, w2}. Let f : V → {0, 1, 2} be defined as follows: f(w1) = f(w2) = 0, f(w) = 2,
and f(x) = 1 for every vertex x /∈ {w,w1, w2}. If f is a TRD-function of G, then
γtR(G) ≤ f(V ) = n − 1, a contradiction. Hence, f is not a TRD-function of G,
implying that there exists a vertex x such that NG(x) = {w1, w2}. Let X be the set
of all such vertices x that are adjacent to both w1 and w2 but to no other vertex
in G. Let g : V → {0, 1, 2} be defined as follows: g(x) = 0 if x ∈ X, g(w1) = 2, and
g(x) = 1 for every vertex x /∈ X ∪ {w1}. Then, g is a TRD-function of G, and so
n = γtR(G) ≤ g(V ) = n − |X | + 1. Thus, |X | ≤ 1, implying that |X | = 1. Thus,
there is exactly one common neighbor, say w12, of w1 and w2 that is adjacent to
no other vertex of G; that is, NG(w12) = {w1, w2}. Notice that w12 is neither a leaf
nor a support vertex, and so w12 belongs to H. If w1 and w2 are adjacent, then
they have degree 3 in H, which is a contradiction with Claim C. (�)

Claim G. The graph H is either a path or a 4-cycle, C4. Further, the following

holds.

(a) If H = C4, then at least two adjacent vertices of H have degree 2 in G.
(b) If H = Pk, then every internal vertex of H has degree 2 in G.

Proof of Claim G. By Claim E, H is connected. By Claim C, H is either a
path or a cycle. Suppose that H is a cycle Ck for some k ≥ 3. Let H be given
by w1w2 . . . wkw1. Renaming the vertices of H if necessary, we may assume that
w2 ∈ WS . By Claim F, the vertices w1 and w3 are not adjacent and G−{w1, w3} has
exactly one isolated vertex. This is only possible if k = 4 (and the isolated vertex
in G − {w1, w3} is the vertex w4). In this case, we note that N(w4) = {w1, w3},
and so dG(w4) = 2. Suppose that both w1 and w3 have degree at least 3 in G.
Thus, WS = {w1, w2, w3}. By considering the vertex w1 instead of the vertex w2,
an analogous argument shows that dG(w3) = 2, a contradiction. Hence, at least
one of w1 and w3 has degree 2 in G. This proves Part (a). Part (b) follows readily
from Claim F. (�)

We now return to the proof of Theorem 13. By Claim G, the graph H is
either a path or a 4-cycle, C4. If H = C4, then by Claim G we deduce that G ∈ G.
If H = P1, then G is obtained from a star by subdividing each of its edge once; that
is, H is a subdivided star. If H = Pk where k ≥ 2, then G is obtained from a double
star by subdividing each pendant edge once and subdividing the non-pendant edge
k − 2 times; that is, G ∈ H. Therefore, if γtR(G) = n, then the four conditions in
the statement of the theorem hold.
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Conversely, suppose that the graph G satisfies one of the four conditions
in the statement of the theorem. Suppose, to the contrary, that γtR(G) < n. By
Proposition 12, G is neither a path nor a cycle. Hence, G satisfies condition (b), (c)

or (d) in the statement of the theorem. Let f = (V f
0 , V f

1 , V f
2 ) be a γtR(G)-function.

Then, |V f
2 | < |V f

0 |, which implies that there is a vertex v ∈ V f
2 with at least two

neighbors belonging to V f
0 . If v has degree precisely 2 in G, then v is isolated in the

graph G[V f
1 ∪ V f

2 ], a contradiction. Hence, v has degree at least 3 in G. If G /∈ G,
then the structure of the graph G implies that every such vertex v of degree at
least 3 has at most one neighbor that is not a support vertex. This in turn implies
that at least one support vertex of v belongs to V f

0 , contradicting Observation 2(b).
If G ∈ G, then the vertex v of degree at least 3 belongs to the 4-cycle in G. Further,
the two neighbors of v that belong to V f

0 belong to the 4-cycle of G. The remaining

vertex of the 4-cycle is therefore isolated in the graph G[V f
1 ∪V f

2 ], a contradiction.
Hence, γtR(G) = n. This completes the proof of Theorem 13.

4. CLOSING REMARKS

We close with the following three open problems that we have yet to settle.

Problem 1. Characterize the graphs G achieving the upper bound in Theorem 4;
that is, characterize the graphs G satisfying 2γ(G) = γtR(G).

Problem 2. Characterize the graphs G achieving the upper bound in Theorem 5;
that is, characterize the graphs G satisfying γtR(G) = 3γ(G).

Problem 3. Characterize the graphs G achieving the upper bound in Theorem 6;
that is, characterize the total Roman graphs G (satisfying γtR(G) = 2γt(G)).
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