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FIXED POINT THEOREM IN ULTRAMETRIC SPACE

Hamid Mamghaderi and Hashem Parvaneh Masiha∗

We give a class of generalizations of a number of known fixed point theorems
to mappings defined on an ultrametric space and non-Archimedean normed
space which are endowed with a graph. We also investigate the relation-
ship between weak connectivity and the existence of fixed points for these
mappings.

1. INTRODUCTION AND PRELIMINARIES

The fixed point theorems are used to determine conditions for the existence
of solutions of polynomial differential equations of any order, or even of systems of
such equations, see Priess-Crampe and Ribenboim [11, 12]. Methods of ultrametric
dynamics also find applications in the study of differential equations over rings of
power series, as in the work of van der Hoeven, for example see his lecture notes [16].
A very different and unexpected application of ultrametric dynamics is found in the
determination of solutions of the famous Fermat equation in square matrices with
entries in a p-adic field, see [14]. Programs with positive clauses were shown to have
models by means of the fixed point theorem of Knaster and Tarski about monotonic
self-maps in a complete lattice. More general programs, involving negation in
clauses lead to the ultrametric space of maps from the Herbrand base with values
0, 1; in this space the values of the distance are the subsets of the Herbrand base.
The fixed point of the immediate consequence operator gives conditions for the
existence of models for the program, see Priess-Crampe and Ribenboim [9, 13] and
Hitzler and Seda [4, 5].
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Fixed point theory has a wide application in almost all fields of quantitative
sciences such as economics, biology, physics, chemistry, computer science and many
branches of engineering. Fixed point theorems for monotone single-valued map-
pings in a partially ordered metric spaces have been widely investigated. These
theorems are hybrids of the two most fundamental and useful theorems in fixed
point theory, namely, the Banach contraction principle [1] and Tarski’s fixed point
theorem [15]. In order to generalizing the Banach contraction principle for multi-
valued mapping mappings in metric spaces:
The founding father of non-Archimedean functional analysis was Monna, who wrote
a series of paper in 1943. A milestone was reached in 1978 at the publication of
van Rooij’s book [17], the most extensive treatment on non-Archimedean Banach
spaces existing in the literature. For more details the reader is referred to [17]. The
idea is reasonable to try and generalize ordinary functional analysis by replacing R
and C by other topological field. This ought to give a new insight in analysis by
showing what properties of the scalar field are crucial for certain classical theorems.
For this topoligical field Monna choose a field K, provided with real valued absolute
value function | · | such that K is complete relative to the metric induced by | · |.
Adding the condition that, as a topological field, K is neither R nor C, Monna
proved the so-called strong triangle inequality

|x+ y| ≤ max{|x|, |y|} (x, y ∈ K).

This formula is essential to theorems in non-Archimedean functional analysis. Among
other things it implies that K is totally disconnected and cannot be made into a
totally ordered field [17]. We first recall some basic notions in ultrametric spaces
and non-Archimedean normed spaces. Van Rooij [17] introduced the concept of
ultrametric space as follows:
Let (X, d) be a metric space. (X, d) is called an ultrametric space if the metric d
satisfies the strong triangle inequality, i.e, for all x, y, z ∈ X:

d(x, y) ≤ max{d(x, z), d(y, z)},

in this case d is said to be ultrametric [17].
We denote by B(x, r), the closed ball

B(x, r) = {y ∈ X : d(x, y) ≤ r},

where x ∈ X and we let r ≥ 0, B(x, 0) = {x}. A known characteristic property of
ultrametric spaces is the following:

If x, y ∈ X, 0 ≤ r ≤ s and B(x, r) ∩B(y, s) 6= ∅, then B(x, r) ⊂ B(y, s).

An ultrametric space (X, d) is said to be spherically complete if every shrinking
collection of balls in X has a nonempty intersection. A non-Archimedean valued
field is a field K equipped with a function (valuation) | · | from K into [0,∞) such
that |x| = 0 if and only if x = 0, |x + y| ≤ max{|x|, |y|} and |xy| = |x||y| for all
x, y ∈ K. Clearly, |1| = | − 1| = 1 and |n.1K| ≤ 1 for all n ∈ N [17].
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An example of a non-Archimedean valuation is the mapping | · | taking each
point of an arbitrary field but 0 into 1 and |0| = 0. This valuation is called trivial.
The set {|x| : x ∈ K, x 6= 0} is a subgroup of the multiplicative group (0,+∞) and
it is called the value group of the valuation. The valuation is called trivial, discrete,
or dense accordingly as its value group is {1}, a discrete subset of (0,+∞), or a
dense subset of (0,∞), respectively [17].

Definition 0.1 ([17]). Let K be a non-Archimedean valued field. A norm on a
vector space X over K is a map ‖.‖ from X into [0,∞) with the following properties:

1) ‖x‖ 6= 0 if x ∈ E \ {0};

2) ‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X);

3) ‖αx‖ = |α|‖x‖ (α ∈ K, x ∈ X).

It is clear that the metric induced by a non-Archimedean norm |·| is an ultrametric.

In1993, Petalas and Vidalis in [8] presented a generalization of a well-known
fixed point theorem for the class of spherically complete non-Archimedean normed
spaces, and in 2000 Sibylla Priess-Crampe and Ribenboim in [10] obtained similar
results in ultrametric space, but the proof of these theorems weren’t constructive.
In 2012 Kirk and Shahzad in [7] gave more constructive proofs of these theorems
and strengthened the conclusions as follow:

Theorem 0.2 ([7]). Suppose that (X, d) is a spherically complete ultrametric space
and suppose T : X −→ X is strongly contractive. Then every closed ball of the form

B(x, d(x, Tx)) (x ∈ X)

contains a fixed point of T .

In this paper, motivated by the work of Petalas and Vidalis [8], Kirk and
Shahzad [7] and Jachymski [6], we introduce two new strongly contractive condi-
tions for mappings on complete ultrametric spaces and non-Archimedean normed
spaces and using these strongly contractive conditions, obtain some fixed point
theorems.

2. MAIN RESULTS

Let G = (V (G), E(G)) be a directed graph, by G̃ we denote the undirected
graph obtained from G by ignoring the direction of edges. If x and y are two ver-
tices in a graph G, then a path in G from x to y of length n is a sequence (xi)

n
i=0 of

n + 1 vertices such that x0 = x, xn = y and (xi−1, xi) ∈ E(G) for i = 1, . . . , n. A
graph G is called connected if there is a path between any two vertices, G is weakly
connected if G̃ is connected.
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Subsequently, in this paper X is a complete ultrametric spaces or non-
Archimedean normed space, and ∆ is the diagonal of the Cartesian product X×X.
G is directed graph such that the set V (G) of its vertices coincides with X, and the
set E(G) of its edges such that ∆ ⊆ E(G) and G has no parallel edges. Moreover,
we may treat G as a weighted graph by assigning to each edge the distance between
its vertices. We give our first results with constructive proofs. In fact, we extend
Kirk and Shahzad’s result on strongly contractive mappings on ultrametric spaces
and non-Archimedean normed spaces endowed with a graph.

Definition 0.3. Let (X, d) be a metric space endowed with a graph G. We say
that a mapping T : X −→ X is G-strongly contractive if

1) T preserves the edges of G, i.e., (x, y) ∈ E(G) implies (Tx, Ty) ∈ E(G) for
all x, y ∈ X;

2) d(Tx, Ty) < d(x, y) for all distinct x, y ∈ X with (x, y) ∈ E(G).

Definition 0.4. Suppose that (X, d) is an ultrametric space endowed with a graph
G and T : X −→ X a mapping. We would say that a B(x, r) is G− T -invariant if
for any u ∈ B(x, r) that (u, x) ∈ E(G), then

Tu ∈ B(x, r).

Theorem 0.5. Let (X, d) be an ultrametric space endowed with a graph G and a
G-strongly contractive mapping T : X −→ X satisfy the following conditions:

(a) There exists an x0 ∈ X such that d(x0, Tx0) < 1;

(b) If x ∈ X is such that d(x, Tx) < 1, then there exists a path in G̃ between x
and Tx with vertices in B(x, d(x, Tx));

(c) If {B(xn, d(xn, Txn))} is a sequence of nonincreasing closed balls in X, and
for each n ≥ 1 there exists a path in G̃ between xn and xn+1 with vertices in
B(xn, d(xn, Txn), then there exists a subsequence {xnk

}∞k=1 of {xn}∞n=1 and

a z ∈
⋂∞

k=1B(xnk
, rnk

) such that for each k ≥ 1, there exists a path in G̃
between xnk

and z with vertices in B(xnk
, d(xnk

, Txnk
)).

Then T has a fixed point in each closed ball of the form B(x, d(x, Tx)) where x ∈
X0 = {z ∈ X : d(z, Tz) < 1}.

Proof. Let x ∈ X0, r = d(x, Tx) and u ∈ B(x, r) such that (u, x) ∈ E(G). Then
we have

d(u, Tu) ≤ max{d(u, x), d(x, Tx), d(Tx, Tu)}

≤ max{d(u, x), d(x, Tx), d(u, x)}

= d(x, Tx)
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and
B(x, d(x, Tx)) ∩B(u, d(u, Tu)) 6= ∅.

Therefore, B(u, d(u, Tu)) ⊂ B(x, d(x, Tx)), so Tu ∈ B(x, d(x, Tx)). This means
that B(x, d(x, Tx)) is G − T -invariant for all x ∈ X0. Now fix an x0 ∈ X0. Put
x1 = x0, r1 = d(x1, Tx1), If r1 = 0, then x1 is a fixed point of T , and the proof is
complete. Otherwise put

E1 = {x ∈ B(x1, r1) |
there is a path in G̃ between x and x1 with vertices inB(x1, r1)}.

Obviously x1 and Tx1 belong to E1, let

µ1 = inf{d(x, Tx) : x ∈ E1}.

If r1 = µ1, then x1 is a fixed point of T , since otherwise, from d(x1, Tx1) < 1 and
(b), there exists a path (x1 = y0, y1, . . . , yn = Tx1) in B(x1, r1) from x1 to Tx1

and since B(x1, r1) is G− T -invariant, it follows that T 2x1 ∈ B(x1, r1) and have

µ1 ≤ d(T 2x1, Tx1)

≤ max{d(Tx1, T y1), d(Ty1, Ty2), . . . , d(Tyn−1, T
2x1)}

< max{d(x1, y1), d(y1, y2), . . . , d(yn−1, Tx1)}

≤ d(x1, Tx1)

= r1,

which is a contradiction. So, Finally, let µ1 < r1. Suppose {εn} is a sequence of
positive numbers such that limn−→∞ εn = 0. Choose x2 ∈ B(x1, r1) such that there
exists a path in G̃ between x1 and x2, and

r2 = d(x2, Tx2) < min{r1, µ1 + ε1}.

By the same argument, If r2 = µ2, then x2 is a fixed point of T . Otherwise, there
exists an x3 ∈ B(x2, r2) such that there exists a path in G̃ between x2 and x3, and

r3 = d(x3, Tx3) < min{r2, µ2 + ε2}.

Having defined xn ∈ X. Let

En = {x ∈ B(xn, rn) |
there is a path in G̃ between x and xn with vertices inB(xn, rn)}

and

µn = inf{d(x, Tx) : x ∈ En}.

If rn = 0 or µn = rn, by the same argument for n = 1, we are finished. Otherwise,
choose xn+1 ∈ B(xn, rn) such that exists path between xn and xn+1 and

rn+1 := d(xn+1, Txn+1) < min{rn, µn + εn}.
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If this process ends after a finite number of steps, then we are finished. Otherwise,
we obtain a nonincreasing sequence of nontrivial closed {B(xn, d(xn, Txn))}. Since
{rn} is nonincreasing, r := limn−→∞ rn exists. Also, {µn} is nondecreasing and
bounded above, thus, µ := limn−→∞ µn also exists. Hence by (c), there exists a
subsequence {xnk

}∞k=1 of {xn}∞n=1 and z ∈ ∩∞k=1B
(
xnk

, rnk

)
such that for each k ∈

N there exists a path in G̃ between xnk
and z with vertices in B(xnk

, d(xnk
, Txnk

)).
Since B(xnk

, rnk
) is G− T -invariant for all k ≥ 1, it follows that

Tz ∈ B(xnk
, rnk

),

for all k ≥ 1. Therefore,

d(z, Tz) ≤ max{d(xnk
, z), d(xnk

, T z)}

≤ rnk

for all k ≥ 1. Thus,

µnk
≤ d(z, Tz)

≤ r

≤ rnk+1

≤ µnk
+ εnk

for all k ≥ 1. Letting k −→ ∞, we obtain d(z, Tz) = r = µ. On the other hand, if
x ∈ B(z, d(z, Tz)), then for each k ∈ N,

d(x, z) ≤ d(z, Tz) ≤ rnk

for all k ≥ 1. Therefore,

d(x, xnk
) ≤ max{d(x, z), d(xnk

, z)} ≤ rnk

for all k ≥ 1. Hence, x ∈ B(xnk
, rnk

) all k ≥ 1. Now let x ∈ B(z, d(z, Tz))
and there exists a path between x and z. Thus there exists a path in B(xnk

, rnk
)

between xnk
and x for all k ≥ 1. Hence µnk

≤ d(x, Tx) for all k ≥ 1. Therefore,
for each k ∈ N, µnk

≤ rnk
. Hence

inf{d(x, Tx) : x ∈ B(z, d(z, Tz))} = d(z, Tz) = r.

Since for all k ≥ 1 we have

d(z, Tz) ≤ rnk
< 1,

thus, it follows by (b) that there exists a path in B(z, d(z, Tz)) from z to Tz.
We claim that r = 0. Suppose on the contrary that r > 0 and suppose (z =
y0, y1, y2, . . . , yN = Tz) be a path inB(z, d(z, Tz)) from z to Tz. SinceB(z, d(z, Tz))
is G− T -invariant, it follows that T 2z ∈ B(z, d(z, Tz)), we have
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d(Tz, T 2z) ≤ max{d(Tz, Ty1), d(Ty1, T y2), . . . , d(Tyn−1, T
2z)}

< max{d(z, y1), d(y1, y2), . . . , d(yn−1, T (z))

≤ d(z, Tz),

which is a contradiction. Hence, r = 0 and z = Tz.

Corollary 0.6. Suppose that (X, d,�) is a partially ordered ultrametric space,
G = (V (G), E(G)) is a directed graph with V (G) = X and E(G) = {(x, y) ∈
X × X : x � y} and T : X −→ X is a G-strongly contractive mapping such that
(a), (b) and (c) in Theorem 0.5 hold. Then for every x ∈ X with d(x, Tx) < 1, the
closed ball B

(
x, d(x, Tx)) contains a fixed point of T .

Remark 0.7. Recall that the metric induced by a non-Archimedean norm is an ul-
trametric, so if we replace the ultrametric space (X, d) in Theorem 0.5 and Corollary
0.6 with a non-Archimedean normed space (X, ‖.‖), then their results are valid.

In the previous theorem and it’s corollary, we obtained some results on the
closed balls B(x, d(x, Tx)) with d(x, Tx) < 1. In the following theorem we obtain
these results on every weakly connected ball of the form B(x, d(x, Tx)) by adding
weak connectivity.

Theorem 0.8. Let (X, d) be a spherically complete ultrametric space endowed with
a graph G and T : X −→ X be a G-strongly contractive mapping. If every closed
ball in X is weakly connected, then every closed ball B(x, d(x, Tx)) contains a fixed
point of T .

Proof. Let x ∈ X and u ∈ B(x, d(x, Tx)). Since B(x, d(x, Tx)) is weakly connected,
there exists a path (x = x0, x1, . . . , xN = u) in G̃ from x to u with vertices in
B(x, d(x, Tx)). Thus, we have

d(x, Tu) ≤ max{d(x, Tx), d(Tx, Tx1), . . . , d(Txn−1, Tu)

≤ max{d(x, Tx), d(x, x1), . . . , d(xn−1, u)

= d(x, Tx).

So Tu ∈ B(x, d(x, Tx)). Therefore, the closed ball B(x, d(x, Tx)) is T -invariant.
Now let

Γ = {B(y, d(y, Ty)) : y ∈ B(x, d(x, Tx))},
and consider Γ with the inverse inclusion. Then Zorn’s lemma shows that Γ
possesses a maximal element, say B(z, d(z, Tz)) where z ∈ B(x, d(x, Tx)). We
show that B(z, d(z, Tz)) is a singleton. To this end, suppose on the contrary that
B(z, d(z, Tz)) is not a singleton. Since B(z, d(z, Tz)) is weakly connected, , there
exists a path (xi)

i=n
i=0 in G̃ from z to Tz with vertices in B(z, d(z, Tz)). Therefore,

d(Tz, T 2z) ≤ max{d(Tz, Tx1), . . . , d(Txn−1, Txn)}

< max{d(z, x1), . . . , d(xn−1, xn)}

≤ d(z, Tz).
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Hence B(Tz, d(Tz, T 2z)) ⊆ B(z, d(z, Tz)) and z /∈ B(Tz, d(Tz, T 2z)) which con-
tradicts to the maximality of B(z, d(z, Tz)). Therefore, B(z, d(z, Tz)) is singleton
and hence z = Tz.

Remark 0.9. Notice that if we replace (X, d) in Theorem 0.8 with a spherically
complete non-Archimedean normed space (X, ‖.‖), then again the theorem holds.

3. EXAMPLES

If (X, d) is a spherically complete ultrametric space, then the weakly connec-
tivity of (X, d) implies (c) in Theorem 0.5, so if there exists an x0 ∈ X such that
d(x0, Tx0) < 1, then the hypotheses of Theorems 0.5 is fulfilled. In this section, we
will give some examples to support our Theorems.

Example. Let X = {a, b, c, e} and d be an ultrametric on X defined by

d(a, c) = d(a, e) = d(b, c) = d(b, e) = 1

d(a, b) = d(c, e) =
3

4
.

Consider a graph G = (V (G), E(G)) with V (G) = X and E(G) = ∆∪ {(a, b)} and
define T : X → X by

Ta = Tb = Tc = a, Te = b.

Obviously, the conditions of Theorem 0.5 hold and T has a fixed point.

In the following example, we present a spherically complete ultrametric space
endowed with a weakly connected graph to support Theorems 0.8.

Example. Let X be the space c0 over a non-Archimedean valued field K with
the discrete valuation and pick a π ∈ K with 0 < |π| < 1. Consider a graph
G = (V (G), E(G)) with V (G) = X and

E(G) = {(x, y) ∈ X ×X |
either x = y or there exists just one i ∈ N such that xi = yi}.

Let x ∈ X. Consider the closed ball B(x, r) and let y, z ∈ B(x, r). If y = z, then
(z, y) is a path in G̃ from z to y. Otherwise, then we have two cases: Either there
exists an i ∈ N such that yi = zi or not.

1. Let there exists i ∈ N such that yi = zi. Let j be such that j 6= i. Put
wj = zj + yj if zj , yj 6= 0 and put wj = π(zj + yj) if either zj = 0 or yj = 0,
otherwise, choose nj ∈ N such that |πnj | < r and put wj = πnj . So, for each
j 6= i wj 6= zj , yj and |wj | < r. Now, put

w = (w1, w2, ..., wi−1, zi, wi+1, ...).
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The process of creating of {wk} shows that for each k 6= i, wk 6= zk, yk and
|wk −xk| < r. Since if {nk} is an increasing sequence, then limk→+∞ |πnk | =
0, limk→+∞ |zk + yk| = 0 and limk→+∞ |π(zk + yk)| = 0, therefore w ∈ c0,
and since for each k, |wk| < r, so w ∈ B(x, r).

2. Let there existn’t i ∈ N such that zi = yi. Put

w = (z1, y2, w3, w4, ...)

where if zj , yj 6= 0 then wj = zj + yj , if either zj = 0 or yj = 0 then
wj = π(zj + yj). So for each k ∈ N, wk 6= zk, yk and |wk| < r.

In both cases, (z, w, y) is a path from z to y with vertices in B(x, r). Therefore,
B(x, r) is weakly connected. It is well-known that when K is discrete, then (X, d)
is spherically complete. So all hypotheses of Theorems 0.5 are fulfilled. On the
other hand, if T : c0 −→ c0 is a G-strongly contractive mapping and there exists an
x0 ∈ X such that d(x0, Tx0) < 1, since (X, d,G) is weakly connected, there exists
a path in G̃ between x and Tx. Thus the hypothesis (b) in Theorem 0.5 holds.

In the next example, we show that the conditions of Theorems 0.5 are inde-
pendent of the conditions of Theorems 0.8.

Example. Let X be the space c0 over a non-Archimedean valued field K with the
discrete valuation and pick a π ∈ K with |π| > 1. Suppose a w ∈ B(0, 1) has just
one zero coordinate. Define a graph G′ = (V (G′), E(G′)), with V (G′) = X and

E(G′) = {(x, y) ∈ X ×X : x = y or (x, y), (x,w), (y, w) ∈ E(G)}.

Where G is the graph introduced in Example . Then G′ is not weakly connected
because if x ∈ X is such that (x,w) is not an edge of G, then there is no path
in G′ between x and w. Indeed, if (x = x0, x1, x2, . . . , xN = w) is a path in G′

between x and w, then (x, x1) ∈ E(G′), and therefore, (x,w) ∈ E(G), which is a
contradiction. So G′ is not weakly connected and the conditions of Theorems 0.8
don’t hold. Now, define T : X −→ X by

T (x) =

{
(
x1

π
,
x2

π2
,
x3

π3
, . . .), (x,w) ∈ E(G),

(1 + x1, 2x2, 2x3, . . .), otherwise.

Then T is G′-strongly contractive mapping and (a) in Theorem 0.5 holds. If x ∈ X
and d(x, Tx) < 1, then (x,w) ∈ E(G). Therefore, (x, Tx) is a path in G̃′ from
x to Tx. This means that (b) in of Theorem 0.5 holds. If {B(xn, d(xn, Txn))}
is a nonincreasing sequence of closed balls such that for each n ≥ 1, there exists
a path in G̃′ between xn and xn+1, then (xn, w) ∈ E(G) for all n ≥ 1 and so,
d(xn, Txn) = 0. Hence there exists a z ∈ X such that B(xn, d(xn, Txn)) = {z} for
each n ≥ 1. Therefore, the hypotheses of Theorem 0.5 hold.

The following example shows that the corresponding results does not hold in
the framework of metric spaces which is not ultrametric space.
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Example. Let R be endowed with the Euclidean metric d and G be a graph with
V (G) = R and E(G) = R× R. the mapping

T : (R, d)→ (R, d)
Tx = x+ 1

1+ex ,

is G-strongly contractive mapping, but has no fixed point.

REFERENCES

1. S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux
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