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OSCILLATION CRITERIA FOR THREE DIMENSIONAL
LINEAR DIFFERENCE SYSTEMS

Ewa Schmeidel and Arun Kumar Tripathy∗

In this work, sufficient conditions for oscillation of solutions of three dimen-
sional difference systems of the form

X(n + 1) = A(n)X(n)

are established. Here X(n) = [x1(n), x2(n), x3(n)]T , A(n) = [aij(n)] is a
given 3× 3 matrix, xi : N→ R, aij : N→ R for i, j ∈ {1, 2, 3}.

1. Introduction

Let’s consider the 3-dimensional difference system

(1) X(n+ 1) = A(n)X(n),

where X(n) = [x1(n), x2(n), x3(n)]T , A(n) = [aij(n)] is a given 3 × 3 matrix,
xi : N→ R, aij : N→ R for i, j ∈ {1, 2, 3}. Here N = {0, 1, 2, . . . }, Nn0 = {n0, n0 +
1, n0 + 2, . . . }, n0 ∈ N and R denotes the set of real numbers.

If aij(n) ≡ aij ∈ R for any i, j ∈ {1, 2, 3}, then equation (1) is equivalent to

(2) X(n+ 1) = AX(n),

where X(n) = [x(n), y(n), z(n)]T and A(n) = [aij ]3×3. The characteristic equation
of (2) is given by det(λI −A) = 0, that is,

(3) λ3 − (trA)λ2 +mλ− detA = 0,
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where m = a11a22 + a11a33 + a22a33 − a13a31 − a23a32 − a12a21. If we denote

G = −detA+
m(trA)

3
− 2(trA)3

27
, H =

1

3

(
m− (trV )2

3

)
, µ = λ− (trA)

3
,

then (3) reduces to

µ3 + 3Hµ+G = 0.

From the theory of algebraic equations (see e.g. [3]), it follows that (3) admits at
least one real root λ1 such that the sign of λ1 is opposite to that of the last term,
namely −detA. Hence, we have the following result:

Proposition 1. Let detA < 0. If G2 + 4H3 > 0, then equation (3) admits a
negative real root and two imaginary roots. If G2 + 4H3 < 0, then (3) admits at
least one negative real root. If m = (trA)2 and 7(trA)3 − 27 detA = 0, then (3)
admits a negative real root with multiplicity 3. If detA > 0, then (3) admits a
positive real root.

In [11], the author has studied the oscillatory behaviour of solutions of the
systems [

x(n+ 1)
y(n+ 1)

]
=

[
a(n) b(n)
c(n) d(n)

] [
x(n)
y(n)

]
and [

x(n+ 1)
y(n+ 1)

]
=

[
a(n) b(n)
c(n) d(n)

] [
x(n)
y(n)

]
+

[
f1(n)
f2(n)

]
.

In this paper, the oscillation criteria of the above systems are established unlike the
oscillation criteria for the differential systems (see e.g. [1], [5]). Keeping in view
of the above purpose as in [11], an attempt is made here to study the oscillatory
behaviour of solutions of equation (1) and also (2) .

Thandapani et al. [10] have studied the oscillation properties of solutions of
three dimensional difference systems of the form:

∆x(n) = a(n)yα(n)

∆y(n) = b(n)zβ(n)

∆z(n) = −c(n)xγ(n)

which is the discrete analogue of its continuous counterpart. Also in an another
work [9], Schmeidel has investigated the oscillation properties of solutions of the
systems

∆x(n) = a(n)a23(y(n− l))
∆y(n) = b(n)g(z(n−m))

∆z(n) = δc(n)h(x(n− k)).
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A close observation reveals that the methods incorporated in both works [9] and
[10] are similar. Unlike the methods of [9] and [10], our objective in this work is
to establish the oscillation criteria for the systems (1). Meanwhile, we use some of
the results of [7] and [8]. Concerning difference equations and system of difference
equations, we refer the monographs by Agarwal et al. [2] and Elyadi [4].

Definition 1. By a solution of (1)/ (2) we mean a vector X(n) which satisfies
(1)/ (2) for n ∈ N. We say that the solution X(n) = [x1(n), x2(n), x3(n)]T os-
cillates componentwise or simply oscillates if each component oscillates. Other-
wise, the solution X(n) is called nonoscillatory. Therefore, a solution of (1)/ (2)
is nonoscillatory if it has a component which is eventually positive or eventually
negative.

2. Preliminaries

In [7] and [8], Parhi and Tripathy have discussed the oscillation and nonoscillation
of third order difference equations of the form:

(4) y(n+ 3) + α(n)y(n+ 2) + β(n)y(n+ 1) + γ(n)y(n) = 0

and

(5) y(n+ 3) + αy(n+ 2) + βy(n+ 1) + γy(n) = 0,

where α, β, γ ∈ R such that γ 6= 0 and {α(n)}, {β(n)}, {γ(n)} are real valued
sequences defined on Nn0

.

A nontrivial solution {y(n)} of (4) is said to be oscillatory, if for every positive
integer N there exists n ≥ N such that y(n)y(n+ 1) ≤ 0. Otherwise, the solution
is nonoscillatory. In other words, a solution {y(n)} is oscillatory if it is neither
eventually positive nor eventually negative. Equation (4) is said to be oscillatory
if all its solutions are oscillatory and strongly nonoscillatory if all its solutions are
nonoscillatory.

In the following, we state some of the main results of [7] and [8] which will
be useful for our next discussion.

Proposition 2. Let γ > 0. If G2 + 4H3 > 0 or G = 0 and H = 0, then (5) is
oscillatory. If G2 + 4H3 ≤ 0, then (5) admits an oscillatory solution, where

G = γ − αβ

3
+

2α3

27
, H =

1

3

(
β − α2

3

)
.

Corollary 1. Let γ > 0. If one of the cases

(i) 3β > α2;

(ii) β ≤ 0, α ≥ 0, γ − αβ
3 + 2α3

27 −
2

3
√

3 (α
2

3 − β)
3
2 > 0;

(iii) β ≥ 0, α ≤ 0, 3β ≤ α2, γ − αβ
3 + 2α3

27 −
2

3
√

3 (α
2

3 − β)
3
2 > 0;
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(iv) 3β = α2, γ = αβ
3 −

2α3

27

holds, then (5) is oscillatory.

Remark 1. We may notice that γ > 0, 3β = α2 and γ = αβ
3 −

2α3

27 imply that
γ > 0 and β > 0. If α ≥ 0, β ≥ 0 and γ ≥ 0 such that α + β + γ > 0, then (5) is
oscillatory.

Theorem 1. Let γ < 0 and α > 0. If one of the conditions

(i) γ − αβ
3 + 2α3

27 < 2
3
√

3 (α
2

3 − β)
3
2 , β < α2

3 ;

(ii) 0 < γ − αβ
3 + 2α3

27 < 2
3
√

3 (α
2

3 − β)
3
2 , 0 ≤ β < α2

3 ;

(iii) γ − αβ
3 + 2α3

27 = 0, 0 ≤ β < 2α2

9

holds, then (5) admits one nonoscillatory solution.

Theorem 2. Let γ < 0, α > 0 and β < α2

3 . If

2

3
√

3

(α2

3
− β

) 3
2

= γ − αβ

3
+

2α3

27
> 0,

then (5) admits two nonoscillatory solutions.

Theorem 3. Let γ < 0 and α < 0. If one of the conditions

(i) 0 < αβ
3 − γ −

2α3

27 < 2
3
√

3 (α
2

3 − β)
3
2 , γ

α ≤ β <
α2

3 ;

(ii) 0 < αβ
3 − γ −

2α3

27 = 2
3
√

3 (α
2

3 − β)
3
2 , γ

α ≤ β <
α2

3

holds, then (5) is strongly nonoscillatory.

Theorem 4. Let γ < 0, α < 0 and 0 < αβ
3 − γ − 2α3

27 < 2
3
√

3 (α
2

3 − β)
3
2 . If

β < γ
α <

α2

3 or β < α2

3 ≤
γ
α holds, then (5) admits two oscillatory solutions.

Theorem 5. Suppose that γ < 0, α < 0 and

0 <
αβ

3
− γ − 2α3

27
=

2

3
√

3

(
α2

3
− β

) 3
2

.

is satisfied. If β < γ
α < α2

3 or β < α2

3 ≤
γ
α is satisfied, then (5) admits two

oscillatory solutions.

Theorem 6. Let γ(n) > 0, β(n) < 0, and α(n) < 0 for n ∈ N. If

α(n+ 1)(α(n− 1)γ(n)− γ(n)− β(n)β(n− 1))

≥ β(n− 1)(β(n+ 1)− γ(n+ 1)− α(n)α(n+ 1))

and
γ(n+ 1)β(n− 1) ≤ α(n+ 1)(β(n)β(n− 1)− γ(n)α(n− 1))

hold for large n, then (4) is oscillatory.
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Theorem 7. Suppose that γ(n) > 0, β(n) > 0, and α(n) < 0 for n ∈ N. If
inf
n≥0

α(n) = l < 0, lim inf
n−→∞

β(n) = m > 0 and lim inf
n−→∞

γ(n) = s > 0 such that

2m3

27s2
− ml

3s2
+

1

s
− 2

3
√

3

(
m2

3s2
− l

s

) 3
2

> 0,

then (4) is oscillatory.

Theorem 8. Let γ(n) ≥ 0, β(n) ≥ 0 and α(n) < 0 for n ∈ N. If lim inf
n−→∞

β(n) =

m ≥ 0 and

lim sup
n−→∞

β(n) > lim sup
n−→∞

α(n− 1)

(
α(n)− m

α(n+ 1)

)
holds, then (4) is oscillatory.

Theorem 9. Let γ(n) ≥ 0, β(n) < 0 and α(n) > 0 for n ∈ N. If lim inf
n−→∞

γ(n) =

s ≥ 0 and

lim sup
n−→∞

γ(n) > lim sup
n−→∞

β(n− 1)

α(n− 1)

(
β(n)− sα(n)

β(n+ 1)

)
hold, then (4) is oscillatory.

Theorem 10. Assume that γ(n) ≥ 0, β(n) > 0 and α(n) ≤ 0 for n ∈ N. If
4m > l2, then (4) is oscillatory, where m = lim inf

n−→∞
β(n) and l = lim inf

n−→∞
α(n).

Let us denote

s = lim inf
n−→∞

γ(n),m = lim inf
n−→∞

β(n) and l = lim inf
n−→∞

α(n).

Theorem 11. Suppose that γ(n) ≥ 0, β(n) > 0 and α(n) ≤ 0 for n ∈ N. If
l2 > 3m and

s− lm

3
+

2l3

27
− 2

3
√

3

(
l2

3
−m

) 3
2

> 0,

then (4) is oscillatory.

Theorem 12. Let γ(n) > 0, β(n) < 0 and α(n) > 0 for n ∈ N. If

s− lm

3
+

2l3

27
− 2

3
√

3

(
l2

3
−m

) 3
2

> 0,

then (4) is oscillatory.

Theorem 13. If α(n) ≥ 0, β(n) ≥ 0, and γ(n) ≥ 0 for n ∈ N such that α(n) +
β(n) + γ(n) > 0, than (4) is oscillatory.

Theorem 14. If γ(n) ≥ 0, β(n) ≥ 0, α(n) < 0 and

γ(n+ 1)

α(n+ 1)α(n− 1)
>
β(n+ 1)

α(n+ 1)
+

β(n)

α(n− 1)
− α(n)

hold for large n, then (4) is oscillatory.
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Theorem 15. If γ(n) ≥ 0, β(n) < 0, α(n) ≥ 0 and

β(n) >
α(n)γ(n+ 1)

β(n+ 1)
+
γ(n)α(n− 1)

β(n− 1)

holds for large n, then (4) is oscillatory.

Theorem 16. If

∞∑
n=1

n
(
|α(n) + 2|+ |β(n)− 1|+ |γ(n)|

)
<∞,

then (4) admits a bounded nonoscillatory solution.

3. Oscillation Criteria for the System (2)

In this section, sufficient conditions are established for oscillation and nonoscillation
of the system (2) .

Theorem 17. Let detA < 0. If G2 + 4H3 > 0 or G = 0 and H = 0, then
the system (2) is oscillatory. If G2 + 4H3 ≤ 0, then (2) admits an oscillatory
component.

Proof. The proof of the theorem follows from Proposition 2 and Proposition 1.
Hence, the details are omitted.

Corollary 2. Let detA < 0. If one of the cases

(i) 3m > (trA)2;

(ii) m ≤ 0, trA ≤ 0, −detA+ m(trA)
3 − 2(trA)3

27 − 2
3
√

3

[
(trA)2

3 −m
] 3

2

> 0;

(iii) m ≥ 0, trA ≥ 0, 3m ≤ (trA)2,

− detA+
m(trA)

3
− 2(trA)3

27
− 2

3
√

3

[
(trA)2

3
−m

] 3
2

> 0;

(iv) 3m = (trA)2, 2(trA)3

27 − m(trA)
3 + detA = 0

holds, then the system (2) is oscillatory.

Proof. For Cases (i)-(iii), there is G2 + 4H3 > 0. For Case (iv), we have G = 0,
H = 0. Hence, by Corollary 2 and Proposition 1, equation (3) admits a negative
real root and two complex roots for Cases (i)-(iii), whereas Case (iv) comes out
with one negative real root repeated thrice. This implies that X(n) is oscillatory
in each of cases. This completes the proof of the corollary.
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Example 1. Let us consider the following system of difference equations

(6)


x1(n+ 1) = −x1(n)

x2(n+ 1) = −x3(n),

x3(n+ 1) = x2(n)

with initial condition [x1(0), x2(0), x3(0)]T = [c1, c2, c3]T . Here

A =

 −1 0 0
0 0 −1
0 1 0

 ,
detA = −1, trA = −1 and m = 1. Hence, the assumptions of Corollary 2 Case
(i) are satisfied. On the virtue of this corollary the system is oscillatory. In fact,
it is easy to see that a solution of (6) is the following

x1(n) = c1(−1)n

x2(n) = c2 cos nπ2 − c3 sin nπ
2 ,

x3(n) = c3 cos nπ2 + c2 sin nπ
2

and it is oscillatory.

Remark 2. From Corollary 2 and Remark 1 it follows that the system (2) is
oscillatory when

m− trA− detA > 0.

Theorem 18. Let detA > 0 and trA < 0. If one of the conditions

(i) − detA+ m(trA)
3 − 2(trA)3

27 < 2
3
√

3

[
(trA)2

3 −m
] 3

2

, m < (trA)2

3 ;

(ii) 0 < −detA+ m(trA)
3 − 2(trA)3

27 < 2
3
√

3

[
(trA)2

3 −m
] 3

2

, 0 ≤ m < (trA)2

3 ;

(iii) − detA+ m(trA)
3 − 2(trA)3

27 = 0, 0 ≤ m < 2(trA)2

9

is satisfied, then the system (2) is nonoscillatory.

Proof. Since detA > 0, then (3) admits a positive real root which then implies
that one component of X(n) is nonoscillatory. The rest of the proof follows from
Theorem 1. This completes the proof of the theorem.

Theorem 19. Let detA > 0, trA < 0 and m < (trA)2

3 . If

0 < −detA+
m(trA)

3
− 2(trA)3

27
=

2

3
√

3

[
(trA)2

3
−m

] 3
2

,

then the system (2) is nonoscillatory.
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Proof. By Theorem 2, it follows that (3) admits two positive real roots and hence
two components of X(n) are nonoscillatory. Therefore, (2) is nonoscillatory. Thus
the proof of the theorem is complete.

Theorem 20. Let detA > 0 and trA < 0. If one of the conditions

(i) 0 < detA− m(trA)
3 + 2(trA)3

27 < 2
3
√

3

[
(trA)2

3 −m
] 3

2

, detA
trA ≤ m < (trA)2

3 ;

(ii) 0 < detA− m(trA)
3 + 2(trA)3

27 = 2
3
√

3

[
(trA)2

3 −m
] 3

2

, detA
trA ≤ m < (trA)2

3

is satisfied, then the system (2) is nonoscillatory.

Proof. Due to detA > 0 and Theorem 3, equation (3) admits three positive real
roots. Therefore, X(n) has three nonoscillatory components. Hence, the theorem
is proved.

Theorem 21. Let detA > 0, trA < 0 and 0 < detA − m(trA)
3 + 2(trA)3

27 <

2
3
√

3

[
(trA)2

3 −m
] 3

2

. If m < detA
trA < (trA)2

3 or m < (trA)2

3 ≤ detA
trA is satisfied,

then the system (2) is nonoscillatory.

Proof. Since detA > 0, then (3) admits one positive real root. By Theorem 4, sys-
tem (3) admits two complex roots. Hence, X(n) is nonoscillatory. This completes
the proof of the theorem.

Theorem 22. Let detA > 0, trA < 0 and 0 < detA − m(trA)
3 + 2(trA)3

27 =

2
3
√

3

[
(trA)2

3 −m
] 3

2

. If m < detA
trA < (trA)2

3 or m < (trA)2

3 ≤ detA
trA is satisfied,

then (2) is nonoscillatory.

Proof. Due to Theorem 5 and detA > 0, it is easy to verify that two compo-
nents of X(n) are oscillatory and one component is nonoscillatory. Hence, (2) is
nonoscillatory.

Example 2. Consider the system of equations

X(n+ 1) = AX(n), A =

 1 1 0
2 1 0
1 0 1

 .(7)

Clearly, detA = −1, trA = 3 and G2 + 4H3 = − 512
729 . Hence, by Theorem 3.1,

(7) has an oscillatory component. Indeed, λ = 1, 1 +
√

2, 1 −
√

2 are the roots of
the characteristic equation of the system (7) and the corresponding components of
X(n) are given by

x(n) =

 0
0
1

 , y(n) = (1 +
√

2)n

 1√
2

1√
2

 , z(n) = (1−
√

2)n

 1

−
√

2
− 1√

2

 .
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4. Oscillation Criteria for the System (1)

In this section, sufficient conditions are established for oscillation and nonoscillation
of all solutions of the system (1). From the system (1), it is easy to see that

x1(n+ 3)− a11(n+ 2)x1(n+ 2)− u1(n+ 1)x1(n+ 1)

− [a21(n)v1(n+ 1) + a31(n)s1(n+ 1)]x1(n)

= [a22(n)v1(n+ 1) + a32(n)s1(n+ 1)]x2(n)

+ [a23(n)v1(n+ 1) + a33(n)s1(n+ 1)]x3(n),(8)

where

u1(n) = a21(n)a12(n+ 1) + a31(n)a13(n+ 1),

v1(n) = a22(n)a12(n+ 1) + a32(n)a13(n+ 1),

s1(n) = a23(n)a12(n+ 1) + a33(n)a13(n+ 1).

Let x2(n) and x3(n) be nontrivial sequences. If we assume that

(9)
[a22(n)v1(n+ 1) + a32(n)s1(n+ 1)] = 0,

[a23(n)v1(n+ 1) + a33(n)s1(n+ 1)] = 0,

then (8) becomes a third order difference equation of the form

x1(n+ 3)− a11(n+ 2)x1(n+ 2)− u1(n+ 1)x1(n+ 1)

− [a21(n)v1(n+ 1) + a31(n)s1(n+ 1)]x1(n) = 0.(10)

If we assume that

(11)
[a11(n)u2(n+ 1) + a31(n)s2(n+ 1)] = 0,

[a13(n)u2(n+ 1) + a33(n)s2(n+ 1)] = 0,

and

(12)
[a12(n)u3(n+ 1) + a22(n)v3(n+ 1)] = 0,

[a11(n)u3(n+ 1) + a21(n)v3(n+ 1)] = 0,

where

u2(n) = a11(n)a21(n+ 1) + a31(n)a23(n+ 1),

v2(n) = a12(n)a21(n+ 1) + a32(n)a23(n+ 1),

s2(n) = a13(n)a21(n+ 1) + a33(n)a23(n+ 1),

u3(n) = a11(n)a31(n+ 1) + a21(n)a32(n+ 1),

v3(n) = a12(n)a31(n+ 1) + a31(n)a32(n+ 1),

s3(n) = a13(n)a31(n+ 1) + a23(n)a32(n+ 1),
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hold, then we find the third order difference equations of the form

x2(n+ 3)− a22(n+ 2)x2(n+ 2)− v2(n+ 1)x2(n+ 1)

− [a12(n)u2(n+ 1) + a32(n)s2(n+ 1)]x2(n) = 0(13)

and

x3(n+ 3)− a33(n+ 2)x3(n+ 2)− s3(n+ 1)x3(n+ 1)

− [a13(n)u3(n+ 1) + a23(n)v3(n+ 1)]x3(n) = 0.(14)

For all n, if we denote

u11(n) = [a21(n)v1(n+ 1) + a31(n)s1(n+ 1)],

v12(n) = [a12(n)u2(n+ 1) + a32(n)s2(n+ 1)],

s13(n) = [a13(n)u3(n+ 1) + a23(n)v3(n+ 1)],

then (10), (13) and (14) can be rewritten as

x1(n+ 3)− a11(n+ 2)x1(n+ 2)− u1(n+ 1)x1(n+ 1)− u11(n)x1(n) = 0,(15)

x2(n+ 3)− a22(n+ 2)x2(n+ 2)− v2(n+ 1)x2(n+ 1)− v12(n)x2(n) = 0,(16)

and

x3(n+ 3)− a33(n+ 2)x3(n+ 2)− s3(n+ 1)x3(n+ 1)− s13(n)x3(n) = 0,(17)

respectively.

Theorem 23. Let a11(n) > 0, a22(n) > 0, a33(n) > 0, u1(n) > 0, v2(n) > 0, s3(n) >
0, u11(n) < 0, v12(n) < 0 and s13(n) < 0 for all n ∈ N. Assume that conditions (9),
(11) and (12) hold for all n ∈ N. If

(I1)


a11(n+ 3)[u1(n)u1(n+ 1)− a11(n+ 1)u11(n)− u11(n)]

≥ u1(n)[a11(n+ 2)a11(n+ 3) + u1(n+ 2)− u11(n+ 1)],

u1(n)u11(n+ 1) ≤ a11(n+ 3)[u11(n)a11(n+ 1)− u1(n)u1(n+ 1)]

(I2)


a22(n+ 3)[v2(n)v2(n+ 1)− a22(n+ 1)v12(n)− v12(n)]

≥ v2(n)[a22(n+ 2)a22(n+ 3) + v2(n+ 2)− v12(n+ 1)],

v2(n)v12(n+ 1) ≤ a22(n+ 3)[v12(n)a22(n+ 1)− v2(n)v2(n+ 1)]

and

(I3)


a33(n+ 3)[s3(n)s3(n+ 1)− a33(n+ 1)s13(n)− s13(n)]

≥ s3(n)[a33(n+ 2)a33(n+ 3) + s3(n+ 2)− s13(n+ 1)],

s3(n)s13(n+ 1) ≤ a33(n+ 3)[s13(n)a33(n+ 1)− s3(n)s3(n+ 1)]

hold for all n ∈ N, then the system (1) is oscillatory.
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Proof. Since (I1) holds, in the view of (9), we obtain (15). Due to Theorem 6,
equation (15) is oscillatory. It means that x1(n) is oscillatory. Analogously, we get
the thesis for x2(n) and x3(n). This completes the proof of the theorem.

Theorem 24. Let a11(n) > 0, a22(n) > 0, a33(n) > 0, u1(n) < 0, v2(n) < 0, s3(n) <
0, u11(n) < 0, v12(n) < 0 and s13(n) < 0 for all n ∈ N. Assume that conditions (9),
(11) and (12) hold for all n ∈ N. If

inf
n≥0

(−a11(n+ 2)) = η11 < 0, inf
n≥0

(−a22(n+ 2)) = η21 < 0,

inf
n≥0

(−a33(n+ 2)) = η31 < 0, lim inf
n→∞

(−u1(n+ 1)) = η12 > 0,

lim inf
n→∞

(−v2(n+ 1)) = η22 > 0, lim inf
n→∞

(−s3(n+ 1)) = η32 > 0,

lim inf
n→∞

(−u11(n)) = η13 > 0, lim inf
n→∞

(−v12(n)) = η23 > 0,

lim inf
n→∞

(−s13(n)) = η33 > 0 such that

(18)
2η3

12

27η2
13

− η11η12

3η2
13

+
1

η13
− 2

3
√

3

(
η2

12

3η2
13

− η11

η13

) 3
2

> 0,

(19)
2η3

22

27η2
23

− η21η22

3η2
23

+
1

η23
− 2

3
√

3

(
η2

22

3η2
23

− η21

η23

) 3
2

> 0

and

(20)
2η3

32

27η2
33

− η31η32

3η2
33

+
1

η33
− 2

3
√

3

(
η2

32

3η2
33

− η31

η33

) 3
2

> 0

are satisfied, then every solution of the system (1) oscillates.

Proof. The proof is analogous to the proof of Theorem 23 and hence is omitted.

Theorem 25. Let a11(n) > 0, a22(n) > 0, a33(n) > 0, u1(n) ≤ 0, v2(n) ≤ 0, s3(n) ≤
0, u11(n) ≤ 0, v12(n) ≤ 0 and s13(n) ≤ 0 for all n ∈ N. Suppose also that conditions
(9), (11) and (12) hold for all n ∈ N. Furthermore, assume that

lim inf
n→∞

(−u1(n+ 1)) = η12 ≥ 0,

lim inf
n→∞

(−v2(n+ 1)) = η22 ≥ 0 and

lim inf
n→∞

(−s3(n+ 1)) = η32 ≥ 0. If

lim sup
n−→∞

(−u1(n+ 1)) > lim sup
n−→∞

(−a11(n+ 1))

(
η12

a11(n+ 3)
− a11(n+ 2)

)
,

lim sup
n−→∞

(−v2(n+ 1)) > lim sup
n−→∞

(−a22(n+ 1))

(
η22

a22(n+ 3)
− a22(n+ 2)

)
and

lim sup
n−→∞

(−s3(n+ 1)) > lim sup
n−→∞

(−a33(n+ 1))

(
η32

a33(n+ 3)
− a33(n+ 2)

)
are satisfied, then (1) is oscillatory.
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Proof. Applying Theorem 8 to (15), (16) and (17), the proof is analogous to the
proof of Theorem 23. Hence the details are omitted.

Theorem 26. Let a11(n) < 0, a22(n) < 0, a33(n) < 0, u1(n) > 0, v2(n) > 0, s3(n) >
0, u11(n) ≤ 0, v12(n) ≤ 0 and s13(n) ≤ 0 for all n ∈ N. Suppose that conditions
(9), (11) and (12) hold for all n ∈ N. Furthermore, assume that

lim inf
n→∞

(−u11(n)) = η13 ≥ 0,

lim inf
n→∞

(−v12(n)) = η23 ≥ 0 and

lim inf
n→∞

(−s13(n)) = η33 ≥ 0. If

lim sup
n−→∞

(−u11(n)) > lim sup
n−→∞

u1(n)

a11(n+ 1)

(
−u1(n+ 1)− η13a11(n+ 2)

u1(n+ 2)

)
,

lim sup
n−→∞

(−v12(n)) > lim sup
n−→∞

v2(n)

a22(n+ 1)

(
−v2(n+ 1)− η23a22(n+ 2)

v2(n+ 2)

)
and

lim sup
n−→∞

(−s13(n)) > lim sup
n−→∞

s3(n)

a33(n+ 1)

(
−s3(n+ 1)− η33a33(n+ 2)

s3(n+ 2)

)
,

then every vector solution of (1) oscillates.

Proof. The proof follows directly from Theorems 10–16.

Theorem 27. Let a11(n) ≥ 0, a22(n) ≥ 0, a33(n) ≥ 0, u1(n) < 0, v2(n) < 0, s3(n) <
0, u11(n) ≤ 0, v12(n) ≤ 0 and s13(n) ≤ 0 for all n ∈ N. Assume that conditions (9),
(11) and (12) hold for all n ∈ N. Furthermore, suppose that

lim inf
n→∞

(−a11(n+ 2)) = η11, lim inf
n→∞

(−a22(n+ 2)) = η21,

lim inf
n→∞

(−a33(n+ 2)) = η31, lim inf
n→∞

(−u1(n+ 1)) = η12,

lim inf
n→∞

(−v2(n+ 1)) = η22, lim inf
n→∞

(−s3(n+ 1)) = η32.

If 4η12 > η2
11, 4η22 > η2

21 and 4η32 > η2
31, then the system (1) is oscillatory.

Theorem 28. Let a11(n) ≥ 0, a22(n) ≥ 0, a33(n) ≥ 0, u1(n) < 0, v2(n) < 0, s3(n) <
0, u11(n) ≤ 0, v12(n) ≤ 0 and s13(n) ≤ 0 for all n ∈ N. Suppose that conditions
(9), (11) and (12) hold for all n ∈ N. Furthermore, assume that

lim inf
n→∞

(−a11(n+ 2)) = η11, lim inf
n→∞

(−a22(n+ 2)) = η21,

lim inf
n→∞

(−a33(n+ 2)) = η31, lim inf
n→∞

(−u1(n+ 1)) = η12,

lim inf
n→∞

(−v2(n+ 1)) = η22, lim inf
n→∞

(−s3(n+ 1)) = η32,

lim inf
n→∞

(−u11(n)) = η13, lim inf
n→∞

(−v12(n)) = η23,

lim inf
n→∞

(−s13(n)) = η33.
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If 3η12 < η2
11, 3η22 < η2

21, 3η32 < η2
31 and

(21) η13 −
η11η12

3
+

2η3
11

27
− 2

3
√

3

(
η2

11

3
− η12

) 3
2

> 0,

(22) η23 −
η21η22

3
+

2η3
21

27
− 2

3
√

3

(
η2

21

3
− η22

) 3
2

> 0,

(23) η33 −
η31η32

3
+

2η3
31

27
− 2

3
√

3

(
η2

31

3
− η32

) 3
2

> 0

are satisfied, then every vector solution of (1) is oscillatory.

Theorem 29. Let a11(n) > 0, a22(n) > 0, a33(n) > 0, u1(n) < 0, v2(n) < 0, s3(n) <
0, u11(n) > 0, v12(n) > 0 and s13(n) > 0 for all n ∈ N. Assume that conditions (9),
(11) and (12) hold for all n ∈ N.

Let lim inf
n→∞

(−a11(n+ 2)) = η11, lim inf
n→∞

(−a22(n+ 2)) = η21,

lim inf
n→∞

(−a33(n+ 2)) = η31, lim inf
n→∞

(−u1(n+ 1)) = η12,

lim inf
n→∞

(−v2(n+ 1)) = η22, lim inf
n→∞

(−s3(n+ 1)) = η32,

lim inf
n→∞

(−u11(n)) = η13, lim inf
n→∞

(−v12(n)) = η23,

lim inf
n→∞

(−s13(n)) = η33.

If conditions (21), (22) and (23) hold, then (1) is oscillatory.

Theorem 30. Assume that conditions (9), (11) and (12) are satisfied for all n ∈ N.
If a11(n) ≤ 0, a22(n) ≤ 0, a33(n) ≤ 0, u1(n) ≤ 0, v2(n) ≤ 0, s3(n) ≤ 0, u11(n) ≤ 0,
v12(n) ≤ 0 and s13(n) ≤ 0 for all n ∈ N such that a11(n+2)+u1(n+1)+u11(n) < 0,
a22(n+ 2) + v2(n+ 1) + v12(n) < 0 and a33(n+ 2) + s3(n+ 1) + s13(n) < 0 for all
n ∈ N, then (1) is oscillatory.

Example 3. Let us consider the following system of difference equations

(24)


x1(n+ 1) = −x1(n) + (−1)nx2(n)

x2(n+ 1) = (−1)nx1(n)

x3(n+ 1) = −x3(n)

Here

A =

 −1 (−1)n 0
(−1)n 0 0

0 0 −1

 ,
where a11(n) ≤ 0, a22(n) ≤ 0, a33(n) ≤ 0. We see that u1(n) = −1 ≤ 0, v2(n) =
−1 ≤ 0, s3(n) = 0 ≤ 0, u11(n) = 0 ≤ 0, v12(n) = −1 ≤ 0, s13(n) = 0 ≤ 0,
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a11(n+ 2) +u1(n+ 1) +u11(n) = −2 < 0, a22(n+ 2) + v2(n+ 1) + v12(n) = −2 < 0
and a33(n + 2) + s3(n + 1) + s13(n) = −1 < 0 for all n ∈ N. On the virtue of
Theorem 30, the system (24) is oscillatory. In fact, it is easy check that a solution
of (24) is the following

x1(n) = c1 cos 2nπ
3 + c2 sin 2nπ

3

x2(n) = (−1)n
(
c1 cos 2(n−1)π

3 + c2 sin 2(n−1)π
3

)
,

x3(n) = c3(−1)n

for n ≥ 1, and it is oscillatory.

Theorem 31. Let a11(n) > 0, a22(n) > 0, a33(n) > 0, u1(n) ≤ 0, v2(n) ≤ 0, s3(n) ≤
0, u11(n) ≤ 0, v12(n) ≤ 0 and s13(n) ≤ 0 for all n ∈ N. Assume that conditions (9),
(11) and (12) hold for all n ∈ N.

If the following inequalities

(−u11(n+ 1))

a11(n+ 3)a11(n+ 1)
>

u1(n+ 2)

a11(n+ 3)
+
u1(n+ 1)

a11(n+ 1)
+ a11(n+ 2),

(−v12(n+ 1))

a22(n+ 3)a22(n+ 1)
>

v2(n+ 2)

a22(n+ 3)
+

v2(n+ 1)

a22(n+ 1)
+ a22(n+ 2),

and
(−s13(n+ 1))

a33(n+ 3)a33(n+ 1)
>

s3(n+ 2)

a33(n+ 3)
+

s3(n+ 1)

a33(n+ 1)
+ a33(n+ 2)

hold for large n, then (1) is oscillatory.

Theorem 32. Let a11(n) ≤ 0, a22(n) ≤ 0, a33(n) ≤ 0, u1(n) > 0, v2(n) > 0, s3(n) >
0, u11(n) ≤ 0, v12(n) ≤ 0 and s13(n) ≤ 0 for all n ∈ N. Assume that conditions (9),
(11) and (12) hold for all n ∈ N.

If the following inequalities

u1(n+ 1) <
a11(n+ 2)u11(n+ 1)

u1(n+ 2)
+
u11(n)a11(n+ 1)

u1(n)
,

v2(n+ 1) <
a22(n+ 2)v12(n+ 1)

v2(n+ 2)
+
v12(n)a22(n+ 1)

v2(n)

and

s3(n+ 1) <
a33(n+ 2)s13(n+ 1)

s3(n+ 2)
+
s13(n)n+ 1)

s3(n)

hold for any large n, then the system (1) is oscillatory.
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