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COMPLEX ZNN FOR COMPUTING TIME-VARYING
WEIGHTED PSEUDO-INVERSES

Predrag S. Stanimirovié, Xue-Zhong Wang, Haifeng Ma*

We classify, extend and unify various generalizations of weighted Moore-
Penrose inverses in indefinite inner product spaces. New kinds of general-
ized inverses are introduced for this purpose. These generalized inverses are
included in the more general class called as the weighted indefinite pseudoin-
verses (WIPI), which represents an extension of the Minkowski inverse (MI),
the weighted Minkowski inverse (WMI), and the generalized weighted Moore-
Penrose (GWM-P) inverse. The WIPI generalized inverses are introduced on
the basis of two Hermitian invertible matrices and two Hermitian involun-
tary matrices and represented as particular outer inverses with prescribed
ranges and null spaces, in terms of appropriate full-rank and limiting rep-
resentations. Application of introduced generalized inverses in solving some
indefinite least squares problems is considered. New Zeroing Neural Network
(ZNN) models for computing the WIPI are developed using derived full-rank
and limiting representations. The convergence behavior of the proposed ZNN
models is investigated. Numerical simulation results are presented.

1. INTRODUCTION

The indefinite inner product associated with an invertible Hermitian matrix
J is defined by
(u,v) g = (u, Jv) = u*Jv,

where (x,y) = z*y denotes the conventional inner product in a Hilbert (unitary)
space. An indefinite inner product (IIP) space denotes a vector space equipped with
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an indefinite inner product defined in terms of an invertible Hermitian matrix J.
In the literature, it is frequently assumed that J belongs to the class of Hermitian
involutory matrices, which satisfy properties

(1) Jr=J, J*=1I

Some classes of Hermitian involutory matrices were highlighted in [23]. In order
to clarify the presentation, the weight matrix J of the order n is denoted as J,.
Peng and Hu in [22] discovered that any square matrix J,, € C"*™ satisfying (1)
is diagonalizable in the form

(2) Jn - SnIk,nka:p q S n,
where S,, is a unitary n x n matrix and

Iy, 0

(3) Ik,nfk =4 |:O ] = Ik,nfk € (Cn><n7 k< n,

—In—k

denotes the (k, n—k) signature matrix, assuming that I,, is the nxn identity matrix.
The concept of the adjoint in an ITP space can be introduced using an indefinite
inner product which includes two vectors z € C",y € C™ and two appropriate
Hermitian invertible matrices .J,,, J, as follows

(4)

(Az,y) 5, = (Ax, Jny) = (v, A" Jny) = (2, Jn(Jn A" In)y) = (2, JnA™y) = (2, A™y) ..,
where A* denotes the usual conjugate and transpose matrix of A. As a consequence,

the matrix

A~ = J, A" ], e CVT

is called the adjoint of A (relative to J,,,J,). If Jp,,J, are signature matrices
Im = Ipm—p,JIn = Ig.n—q, then A~ is called a pseudo-Euclidean conjugate transpose
of A, defined in [9]. Further, the weight tensors J,,, = Iy y,—1 and J,, = I1 ,_1 define
the Minkowski inner product and Minkowski conjugate transpose (see, for example
[9, 26]). Particularly, a space with the Minkowski inner product is called the
Minkowski space, and denoted by M.

The weighted adjoint matrix can be introduced using an indefinite inner prod-
uct which includes two vectors x € C",y € C™, two appropriate Hermitian involu-
tory matrices J,,, J, and two Hermitian invertible matrices M, N of appropriate
dimensions:

<Am?y>Jm,M = (A(t, JmMy) = (xaA*JmMy) = (x’JnN(NiljnA*JmM)y)
= <$a AsznNa

(5)

where the weighted adjoint matrix A™ of A is defined as

(6) A = N'AM = N~1J,A* J,, M.
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In the case when J,,,J, are appropriate signature matrices Jp, = Ip m—p, Jn =
14 n—q, the weighted adjoint matrix becomes the weighted pseudo-Euclidean con-
jugate transpose matrix. Particularly, the choice p = ¢ = 1 gives the weighted
Minkowski conjugate transpose matrix, considered in [9, 53]. In the special case
Im = I, Jn = I,, the weighted adjoint matrix becomes the M N-adjoint, consid-
ered in [13].

For any matrix A of the order m x n the following analogies of Penrose
equations can be considered in ITP spaces:

(1) AXA=A, (2) XAX=X, (37) (AX)"=AX, (4°) (XA)~=XA
(3%) (AX)®=AX, (4%) (XA)*=XA.

The generalized inverses obeying the equations defined by the numbers contained
in a sequence S of elements from the set {1,2,3~,4™,3% 4%} is denoted by A{S}.
A generalized inverse from A{S} is called an S-inverse of A. The matrix X satis-
fying the equations (1), (2), (37), (4”™) represents the Moore-Penrose inverse in ITP
spaces. We use the term indefinite pseudoinverse (IPI shortly) to denote such the
matrix X and mark it by A®. In the IIP space where J, and J,, are appropri-
ate signature matrices, the IPI becomes the pseudo-Euclidean pseudoinverse (PPI
shortly) of A, which is denoted by A®. In the Minkowski space (the case k = 1
of (3)), the pseudo-Euclidean inverse reduces to the Minkowski inverse A*. The
weighted indefinite pseudoinverse (WIPI shortly), denoted by denoted by AS; y,
satisfies matrix equations (1), (2), (3%), (4%). In the case when J,,, J,, are signature
matrices, the WIPI becomes the weighted pseudo-FEuclidean pseudoinverse (WPPI
shortly), which will be denoted by A%’N. Further, after the choice k = 1 of (3), the
WPPI becomes the weighted Minkowsi inverse (WMI shortly), which was defined
in [9] and later investigated in [53]. The WMI is denoted in the present paper by
Aﬁ n and related to M, N and Minkowski matrices J,,, J,,,. Also, the Minkowski
inverse (MI shortly) has been investigated in several articles. Some of them are, for
example, [16, 20, 52]. Necessary and sufficient condition for the existence of the
Minkowski inverse in the Minkowski space is stated in [20]. New representations,
properties and conditions for the continuity of the weighted Minkowski inverse
were considered in [9, 53]. The weighted Minkowski inverse is one of the impor-
tant generalized inverses for solving matrix equations in Minkowski space [53]. The
nonnegativity of the Moore-Penrose inverse of Gram matrices in an indefinite inner
product space with the indefinite matrix multiplication was considered in [25]. Li
et all. in [13] provided the mixed and componentwise condition numbers for the
Moore-Penrose inverse in indefinite inner product spaces (IPI). Nonnegativity of
the inverse, the Moore-Penrose inverse and other generalized inverses in indefinite
inner product spaces was investigated in [7]. The matrix X is said to be Re-nnd
(Re-nonnegative definite) if its Hermitian part H(X) = 1(X 4+ X*) is positive
semidefinite, i.e., H(X) > 0. Necessary and sufficient conditions for the existence
of Re-nnd solutions (resp. anti-reflexive solutions) of the equation AXB = C in
terms of Minkowski inverses were considered in [10] (resp. in [11]). Additive prop-
erties of the generalized Drazin inverse of sum P + @ of two GD-Drazin invertible
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operators P, @Q in Minkowski space were investigated in [12].

Following the results from [8, 13] it is observable that the equations (3™)
and (47) can be rewritten in the equivalent form

(37) (AX)=AX < (JpAX)* = J, AX;
(47) (XA)*=XA < (XAJ,)" = XAJ,.

~
~

Similarly, the equations (3¥) and (47¥) can be rewritten as

(3%) (AX)®=AX < (J,MAX)* = J,MAX;
(4%) (XA)®=XA <= (J,NXA)* = J,NXA.

As a consequence, the generalized inverse A%I, N in the case Jy, = I, J, = I,
becomes the generalized weighted Moore-Penrose (GWM-P) inverse, investigated

in [13, 28]. We use the term Ag\Z)N to denote the GWM-P inverse. Further,
A%N = Ag,iM 7, n- In addition, if M, N are positive definite matrices, then A%’N
becomes the usual weighted Moore-Penrose inverse A;rw’ N

A summarization and classification of various various generalized inverses
which satisfy all the matrix equations (1), (2), (3¥), (4¥) in a number of particular
cases is presented in Table 1.

Table 1. Generalized inverses which satisfy (1), (2), (3%), (47%).

M, N Jms JIn Name Short Notation
Hermitian invertible|Hermitian involutory | Weighted indefinite pseudoinverse | WIPI A(I?/I N
I, In Hermitian involutory |Indefinite pseudoinverse IPI A©
Hermitian invertible Inm—p,Iqn—q Weighted pseudo Euclidean WPPI A%,N
pseudoinverse
I, In Ipm—p,Iqn—q Pseudo-Euclidean pseudoinverse |PPI A9
Hermitian invertible Itm—1,11,n-1 Weighted Minkowski inverse WMI A%N
I, In, Iim—1,11,n-1 Minkowski inverse MI AM
Hermitian invertible I, I, Generalized weighted GWM-P AE\E)N
Moore-Penrose inverse
Positive definite I, In, Weighted Moore-Penrose inverse |WMP ALN
I, In I, I, Moore-Penrose inverse MP AT

Our first motivation was applicability of the PPI generalized inverses in solv-
ing various appearances of indefinite least-squares (ILS) problem. The ILS prob-
lems arise in robust estimation, filtering and control [2]. An algorithm for solving
an ILS problem was investigated in [2]. Motivated by the applicability of various
Pseudo-Euclidean inverses, we set itself two main goals. The first goal is a de-
tailed investigation of the applicability of PPI generalized inverses in various ILS
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problems.

Our second goal is to define appropriate numerical algorithms for comput-
ing the WIPI in both time-invariant and time-varying case. To the best of our
knowledge, only iterative methods for computing the weighted Minkowski inverse
are considered so far. We observed four iterative methods defined in [9] as well
as a family of iterative methods of the hyperposer type from [16] for approximat-
ing the weighted Minkowski inverse. These methods are iterative, suffering from
the choice of the initial approximation which must satisfy rigorous and ultimate
conditions. Moreover, these methods are appropriate only for time-invariant ma-
trices. Our selection of an appropriate technique for computing WIPI, WPI and
PI in time-invariant case is guided by the fact that many authors have shown great
interest for computing the inverse or various classes of generalized inverses on the
basis of gradient-based recurrent neural networks (GNNs) or Zhang neural networks
(ZNNs). Recurrent neural networks (RNNs) show a significant advantage in com-
parison with the numerical iterative algorithms. Firstly, the main feature of RNNS
is their ability of hardware implementation and parallel distributed essence of recur-
rent neural dynamics, which makes them applicable in time-varying case as well as
in real-time applications [44]. Also, as it was shown in [46], the discrete-time ZNN
model incorporates Newton iteration as its special case. As a further confirmation
of this fact, we briefly restate main trends in this research. A number of nonlin-
ear and linear recurrent neural network models for computing the inverse or the
pseudoinverse were developed in [19, 33, 34]. Further, various RNNs designed for
calculating the pseudoinverse of rank-deficient matrices were created in [36]. Three
recurrent neural networks for computing the weighted Moore-Penrose inverse were
introduced in [40]. A feed-forward neural network architecture for computing the
Drazin inverse was proposed in [3]. The dynamic equation and induced gradient
recurrent neural network for computing the Drazin inverse was defined in [30].
Gradient-based RNNs for generating outer inverses with prescribed range and null
space in the time-invariant case were introduced in [55]. Two specific dynamic
state equations and corresponding gradient based RNNs for generating the class of
outer inverses of time-invariant real matrices were proposed in [31]. In [15], the
authors defined five complex-valued ZNN models which are aimed to computation
of time-varying complex matrix generalized inverses. ZNN models for online time-
varying full-rank matrix pseudoinversion were introduced and analyzed in [43]. An
RNN for computing the Drazin inverse with the linear activation function was pro-
posed by Stanimirovi¢, Zivkovié¢, and Wei in [30]. The relationship between the
Zhang matrix inverse and the Drazin inverse, discovered in [45], leads to the same
dynamic state equation which was considered in [30] in the time invariant matrix
case. The dynamical equation and corresponding artificial recurrent neural net-
work for computing the Drazin inverse of an arbitrary square real matrix, without
any restriction on eigenvalues of its rank invariant powers, were proposed in [29].
Zhang et all. in [47] introduced a general ZNN model for online inversion of time-
varying matrices and its further verification was presented in [48]. Various ZNN
models for computing online time-varying Moore-Penrose inverse of a full-rank ma-
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trix were proposed in [50]. Two ZNN models for computing the Drazin inverse
of arbitrary time-varying or time-invariant complex square matrix were presented
in [37]. ZNN models for computing outer inverses with prescribed range and null
space of time-varying complex matrix were presented recently in [38].

Our intention in the present paper is to derive appropriate ZNN models for
computing the WIPI in the time-varying complex case. Particularly, provided ZNN
models will be applicable in the computation of the generalized inverses WPPI,
PPI, WMI and MI. The dynamics of these neural networks are based on matrix-
valued ZF's arising from the limit representations of the WIPI. Global convergence
of the proposed complex neural network models is theoretically proved. In addition,
the efficacy and the superiority of the proposed complex neural network models is
verified through illustrative computer-simulation examples.

In order to achieve our goal, it is necessary to provide explicit representa-
tions of WIPI as a particular outer inverse with prescribed range and null space.
Therefore, our third goal is induced by the computational aspect of the WIPI
and it investigates the full-rank and limiting representations of generalized inverses
WIPI, WPPI, PPI, WMI and MI in relation to the full-rank representation of outer
inverses with prescribed range and null space.

Our main results, enumerated according to the sequence of the sections, are
as follows.

(1) The WIPI, WPPI and WMI are represented as a particular outer inverse
with prescribed range and null space.

(2) An application of PPI in solving the indefinite least-squares problem is
presented.

(3) A new ZNN model, called ZNNWIPI, for computing the WIPT is derived
using derived representations.

(4) Convergence of the proposed ZNNWIPI model is investigated and numer-
ical experiments are presented.

The global organization of the paper is as follows. Representations of the
WIPI, WPPI and WMI and its main properties are investigated in Section 2. Ap-
plication of the PI in solving indefinite least-squares problems is presented in Sec-
tion 3. Using defined representations, corresponding ZNN models for computing
the WIPI are developed in Section 4. Convergence analysis is presented in Section
5. Several illustrative numerical examples are presented in the last Section 6.

2. WIPI, WPPI AND PPI AS OUTER INVERSES

If A e C™™ is m x n complex matrix of rank rank(A4) = r, T is a subspace
of C" of dimension ¢t < r and S is a subspace of C™ of dimension m —t, then A has
an outer inverse X with prescribed range R(X) = T and null space N'(X) = S if
and only if AT &S = C™. In this case, X is unique and it is denoted by Ag?)s The
outer generalized inverses with prescribed range and null-space have a remarkable
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significance in matrix theory. The {2}-inverses have been used in the iterative
methods for solving the nonlinear equations [1] as well as in statistics [5, 6]. In
particular, outer inverses show great influence in stable approximations of ill-posed
problems and in linear and nonlinear problems involving rank-deficient generalized
inverses [21, 51]. On the other hand, it is well known that the Moore-Penrose
inverse AT and the weighted Moore-Penrose inverse ARL - the Drazin inverse AP
and the group inverse A# can be presented in a unique way, as generalized inverses
Ag?) )s for appropriate choice of matrices T' and S [1]:

(7) A =48 Al =A% At = N71A*M.

R(A*)N(A*) , R(A!),N(At)?

For a given square matrix A the next identities are satisfied [1, 35, 39]:

(8) AP =A%)

4@
oy arary k> Ind(4), A* = A

R(A)N(A)

Full-rank representation of {2}-inverses with prescribed range and null space
is determined in the next proposition, which was originated in [27].

Proposition 1. [27] Let AcC"*", T be a subspace of C™ of dimension s < r and
let S be a subspace of C™ of dimensions m—s. In addition, suppose that G € C"*™
satisfies R(G) = T,N(G) = S. Let G has an arbitrary full-rank decomposition, that

is G=UV. If A has a {2}-inverse A%)S, then:
(1) VAU is an invertible matrix;

2) _ 4@ _ -
(2) AR, = AZ)) vy = U(VAU) IV

The following limit representation of outer inverses can be derived using the
results from [17, 41].

Proposition 2. ([17, 18, 41]) Let A € C™*™ be of rank r, let T be a subspace
of C™ of dimension s < r, and let S be a subspace of C™ of dimension m — s. In

addition, suppose that G € C"*™ satisfies R(G) =T and N(G) = S. In the case
of existence, Ag??g can be derived using the following limit representation:

@ -1
(9) AP = lim (GA+A) ' G

Due to the representations given in Lemma 1, the WIPI can be considered
as an outer inverse of prescribed range and null space. The spectrum of a complex
matrix A is denoted by o(A).

Lemma 1. Let A = BC € C™*™" be a full-rank factorization of rank A, J,, €
cmxm - J, € C"™" be Hermitian involutions and M € C™*™ N € C"*" be two
Hermitian invertible matrices. Then A%N exists if and only if rank(AA®) =
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rank(A¥A) = rank(A) and its full-rank representation is defined by
Ay v =C~ (CC*) 1 (BB)'B®
= O~ (B¥AC™) ™' B®

Amc )N (BX)
= AF (A AAR)T A=,

(10)

Proof. Firstly, one can verify that the result derived (for weighted Minskowski
conjugate transpose) in [9] is valid for the weighted adjoint matrix A™:

0(A¥A) contains nonnegative real numbers <= N (A¥A) = N(A).

Further, using N(A¥A) = N(A) < rank(4AA~) = rank(4), it follows that
o0 (A®¥A) contains nonnegative real numbers. Now, generalizing the limit repre-
sentation of A}/ y derived in [9], it can be verified that

© 1 = -1 4=~ _ 1: ~ ~ -1
(11) Afy = lim (ASA+ A1) 71 A = lim A% (A% + A1)

As a consequence, in view of Proposition 2, it follows that A%y N is a certain outer
inverse with prescribed range and null space, as follows:

O _ 42
AN = AR(amy M)

Now, the representations given in (10) can be obtained using basic representation
of the outer inverse, presented in Proposition 1. [

Corresponding representations of A® are derived in the next corollary.

Corollary 1. Let A = BC € C™*" be a full-rank factorization of A and J, €
Cn, J, € C™™ be Hermitian involutions. Then A® exists if and only if
rank(AA™) = rank(A~A) = rank(A) and possess the following representations:

A® =Cc~(cc™)H(BYB) ' B~
= C~(B~AC™) ' B~
(2)
(12) = AR~ s~
= A~ (A~AAMT A~
= I (I ATn) Ry wrcey I
where A~ = J, A*J,,.

Proof. Tt is necessary only the last representation. It follows from
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A® = C~ (B~AC™) "' B~
= J,C* Jy (J, B* Jyy AJnC*J) " 0B T,
= J,C* (B*J, AJ,C*) "' B* J,,,

and C* (B*JmAJnC*)_I B* = (JmAJn)gEC*)N(B*)' U

The particular choice M = I,,,, N = I, Jp, = I1 m—1,Jn = I1n—1 in Corol-
lary 1 leads to the full-rank representation of the MI, which was discovered in [52,
Theorem 8]. Also, Lemma 1 in the case J,, = Is, J, = I, produces known repre-

sentation of AE\E)N, derived in [28, Theorem 3.2.]. This result is verified in Corollary
2.

Corollary 2. Let A = BC € C"*™ be a full-rank factorization of rank r of the
matriz A, let Jy,, = Im,Jn = I, and M, N be two Hermitian invertible matri-

ces of the order m X m and n X n, respectively. Then AE\E)N exists if and only if
rank(AN ~tA*M) = rank(N 1 A*M A) = rank(A) and possess the following repre-
sentations:

(13) Ay =N-tcr (eNT'er) T (B*MB) T BT M.

Proof. Denote by N, and M, two Hermitian invertible matrices of the order r x r.
Then

C~¥=N"'I,C*I,M, = N"*C*M,, B¥ =N, 'I,B*I,,M = N, 'B*M.
Using the first representation of Corollary 1, one can obtain
Ay = NT'O*M, (N B*MANT'C*M,) ™ N7'B*M
— N7'C* (B"MAN~'C*) ™' B*M,

which was our original intention. O

3. SOLVING INDEFINITE LEAST-SQUARES PROBLEMS USING
PPI

The indefinite matriz product of two matrices A € C™*™ and B € C™*! was
introduced in [24] and defined by Ao B = AJ, B, where J,, € C**™ is a Hermitian
involutory matrix. A matrix Alfl € C**™ is called the Moore-Penrose inverse of
A € C™*™ with respect to the indefinite matrix multiplication if it satisfies the
following matrix equations:

AoXoA=A XoAoX =X, (AoX)"=A0X, (Xo0A)”"=XoA
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The matrix Alfl satisfies Alfl = 7,497, [24]. We will use the notation indefinite
matriz product pseudoinverse (IMPPI) for Alfl,

The Moore-Penrose inverse in an indefinite inner product space when working
with the usual matrix product exists if and only if rank(AA*) = rank(4*A4) =
rank(A). It however exists in such spaces with the indefinite matrix product.

Corollary 3. Let A € C**", A = BC be a full-rank factorization of A and
Jm € C™¥™  J. € C™" be two appropriate Hermitian involutions. Then Al
possesses the representation

(14) Al = c*(CoCc*)™ ' (B* o B)™' B*.

Proof. The representation can be derived using the representations of A® from
Corollary 1:
Al = 7, A% J,,

= J,C~ (CC™) Y (B~B) ' B~ J,,
= C*J, (J,B*J,, AJ,C*J,) " J,.B*
= C* (B*JmAJ,C*) "' B*
= C*(B*oAoC*) ' B*
= C*(CoC*) " (B*oB)' B*.

[

The investigation of indefinite least-squares problem (ILS problems) is re-
stricted to real matrices. The solution of ILS problem of the general form
(15) min (Az — b)"J,(Az — b) = min (Az — )T o (Az —b)
was investigated in [2]. The algorithm for finding the solution of (15) was proposed
in [2] and it is based on the QR factorization of the coefficient matrix. This kind
of problems arises in robust estimation, H°°-smoothing in estimation, filtering and
control [2, 13]. Easily computable mixed and componentwise condition numbers
of the ILS problem are presented in [13]. A solution of (15) which is based on
the QR factorization of the coefficient matrix was proposed in [2]. In the current
section, a correlation between the indefinite least-squares problem (15) and the
pseudo-Euclidean generalized inverses is investigated. Further, our goal is to find
solutions of the of indefinite least-squares problems
(16) min (Az — b))~ o (Az —b)

xr
in terms of pseudo-Euclidean generalized inverses.

Theorem 1. Let A € R"*" and J,, € C™*™, J, € C"*" be two Hermitian
involutions. The vector J, ATl o b is the solution of the indefinite least-squares
problem (15) if AT o A is symmetric positive-definite.
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Proof. According to known result from [2], the solution of (15) is the vector x4
given as the unique solution of the linear system of equations

(ATJ, Ay = (AT J,.b).

This implies
e = (ATJnA) " AT T b
= (AT o A) " AT, b.

The desired result follows from Corollary 3, in the case when AT o A is symmetric
positive-definite. O

Theorem 2. Let A € R™*". The vector J, A b is the solution of the indefinite
least-squares problem (16) if the matriz AT A is positive-definite.

Proof. The normal equation corresponding to (16) is defined by
Ao Aox=A"ob.
The last equation can be rewritten in the equivalent form
Jy AV J 0 Aoz = J, AT, 0b,

which gives
AT T dmAox =AY T, Jnb < ATA J,z = ATb.

If the matrix AT A is positive-definite, then
x=J, (ATA) " AT,

The proof can be completed using AT = (ATA)_1 AT, O

4. ZNN MODELS FOR COMPUTING WEIGHTED INDEFINITE
PSEUDOINVERSES

Our main idea is to modify complex underlying fundamental error-monitoring
ZFs from [15, 49], and introduce general ZNN models which correspond to the
time-varying WIPI. The limit representations given in (11) are useful in deriving
the ZNN models for computing A(t)%] - The limit representation originated in
Lemma 2 can be derived extending (11’) to time-varying complex matrix case and
applying the result from [42]. For a better understanding of the statement, it is
necessary to mention that the condition

o (Az (A= AA%)" A“\R(Az)) c Qc (0,00)

is satisfied.
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Lemma 2. Let A(t) € C"*", J, € C"*", Jp, € C™*™ be two appropriate Hermi-
tian involutions and M € C™*™ N € C"*™ be two Hermitian invertible matrices.
Then the WIPI of A(t) is represented by the limit representations
(17)
A x = lim (A(t)™A D7HA@)® = lim A6~ (A AT + )7
(051 = im (A=A + A1) AW = lim AT (AG)ADT + A7)
(18)

A w=lim (A (A=A A=) A A+AT)

A~ (AT A AR)™)A@)™
= lim A(t)™ (A()S A A)) AR (AR ALY (AT AL ALY AT M)~

A—0

The starting point in defining the ZNN models for computing the WIPT arises
from limit representations (17), (18) and two fundamental properties of A(t)S), M.N
introduced in Lemma 3.

Lemma 3. Let A(t) € C"*™ be a given m X n matriz of rank r, let J,, € C™*™,
Jn € C™*™ be two appropriate Hermitian involutions and M € C™*™ N € C™*"
be Hermitian invertible matrices. Then the matriz identities

AT A AW) TN = A1),

(19) AW NADAR)T = A(t)™

are satisfied.

Proof. Firstly, using the representation of A% N = Agz AR) N(A%) from Lemma 1,
one can verify the identities (cf. [4, 35]):

2
A(t)A(t)gngz)N(Az) = Par(a~) N(A%);

©) _
AR (=) wam) A = Pram) (amariamy o)

the proof can be completed using known results:
Pr, vG =G ifand only if R(G) C L and GP y = G ifand only if N(G) D M. O

4.1. The ZNNWIPI models

The complex ZNN model is developed by employing basic steps which were
defined in [15, 37, 43].

According to the limit representations (9) and (18), it is reasonable to pro-
pose the following two dual fundamental error-monitoring ZFs which represent
the basis for ZNN models appropriate for numerical computation of A(t)% MN =

(2) .
A(t)R(A%),N(Az)-

0 ) — { (G(1)A(

)+ A Vi(t) = G(t), n < m,
Vi(t) (A(H)G()

YG(t) + M) — G(t), n>m.
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In (20), the parameter A > 0 from (20) is sufficiently small and G(¢) is defined by

(21)

Gt) = A(t)7, if the limit representation (9) is used,
Tl AQT (AT AR)A()®)" A(t)™,  if the limit representation (18) is used.

Since (20) involves two dual cases, only the case n < m is considered in
details. The standard design formula is defined by

(22) ¥ () = dE;(t)

where E~(t) denotes the time derivative of E¥(t), the scaling parameter v € R,
v > 0, is as large as possible [15] and H(:) : C"*™ — C™*™ is an appropriately
defined complex-valued matrix-to-matrix activation function.

= —yH(E~ (1)),

Two most popular activation functions from [14] will be exploited to develop
(22). Let C = A+ 1B = (c;) € R™™ be a complex matrix, where ¢ = /=1
denotes the imaginary unit. Further, let (D) = (f(dg;)) be a function element-
wise applicable to elements of the complex matrix D = (dg;) € R"*™, where f(-)

is an odd and monotonically increasing function. The type I activation function is
defined by

(23) H1(C) = Hi(A +B) = F(A) + 1 F(B), A, B €R™™,

If Ao B denotes the Hadamard product of matrices A = (a;;) € R**™ and B =
(bij) € R™*™ ie., Ao B = (ai;bi;), then the type II activation function is defined
as

(24) Ho(C) = Ha(A+ B) = F(T') o exp(LO),

where I' = |[A 4+ ¢B| € R"™ and © = O(A4 + ¢B) € (—m,w|"*™ denote element-
wise modulus and the element-wise arguments, respectively, of the complex matrix
C = A+ :B. The most widely used real-valued odd and monotonically increasing
functions f(x) are defined as follows.

Linear function: f(x) = x;

(a) Bipolar-sigmoid function: f(z) = igigg:gg ﬁzgg:gg, q>2;
) ] ) xP, if |z] > 1
(b) Power-sigmoid function: f(z) =1 14exp(—q) 1—exp(—qz) otherwise ’ q=2,p>3;

1—exp(—gq) 1+exp(—gqz)’

(¢) Smooth power-sigmoid function: f(z)=3a?+ i‘:gg:gg ;Zigg:g;g, p>3,q > 2.

To simplify notation, an universal mark H; will be used instead of H; or Hs.
The time derivative of E¥(t) is equal to

(25)  E~(t) = (G(t)A(t) + G(t)A(t)) Vi(t) + (G)A(t) + M) Vi (t) — G(2).

Usage of (25) into the general ZNN pattern (22) with the general activation function
H;. leads to

(GOAR) +AD VA1) = G(1)- (GOA) + GOAWD ) Vi)
“YH (GOAW) + M) VA () - G(1).

(26)
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Now, (26) can be transformed into the implicit ZNN model for computing A(t)%’ N

Vi(t)= 1 [~GOADVAW) + G- (CHAD + GHAWM ) V()

(27) A
—7HE (G)A() + M) Vi(t) — G(1))] .-

The ZNN model (27) designed for calculating the generalized inverse WIPI
(resp. IPI, WPPI, PPI, WMI, MI) will be denoted by ZNNWIPI (resp. ZNNIPI,
ZNNWPPI, ZNNPPI, ZNNWMI, ZNNMTI). The general structure of the ZNNWIPIT
model is in the form of the union of a number of m independent subnetworks,
wherein the jth subnetwork is aimed to approximation of the jth column v;(¢) of
Vi(t), 7=1,...,m. Also, g;(t) denotes the jth column vector of the matrix G(¢).
Then the dynamics of the jth subnetwork included into the ZNNWIPI network
model can be expressed as

()= 5 [~ A@);0) + 65(0)~ (GOA®) + GAW ) 0500

—YHi ((G()A(E) + M) v;(t)—g; ()], j=1,...,m.

The model (28) is aimed to computation of v;. Finally, the complex ZNN model
(28) initiates the (ij)th neuron’s dynamic equation in the form

. 1| . - - .
(29) by =+ [Z birUr; — v <Z Hi(Cinvrs — gij)> =D dikvij + gij
k=1

k=1 k=1

(28)

b

wherein i =1,...,n,7=1,...,m and
bir = (=G)A(1))s1,» ve; = (Vi(t))g 5 cin = (GRE)A(E)+AD),,
di = (GOAWD + COAWD) . g5 = (GO

Clearly, values of A closer to zero lead to better approximation of the limiting
representation (9).

4.2. Particular cases of ZNNWIPI and ZNNIPI

Case (1). The particular case A(t)~ = A(¢)* of (20) gives the complex ZNN-IT
model derived in [15] with the aim of the pseudoinverse computation The starting
point in [15, 49] was the fact that the Moore-Penrose inverse A(t)! which represents
the left inverse satisfies the identity A(t)"A(t)A(t)f. Further, on the basis of the
assumption that A(t)"A(t) is invertible, the following matrix-based error function

is considered
*

(30) E(X(t),1) = A(t) A()X () = A(t)",

where X (t) corresponds to the pseudoinverse inverse of A(t). An elegant way to
avoid the assumption of the invertibility of A(t)" A(t) was presented in [15]. Namely,
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the authors of [15] defined the complex ZF, called ZF(5), which arises from the ZF
defined in (30) and the Tikhonov regularization:

*

(31) E(X(t),t) = (A(t)*A(t) + )\I) X(t) — A", A>0.

Clearly, (31) can be considered as the particular case M = I,,,, N = I, J,, =
I, Jn = I, of (20).

Case (2). The particular choice M = I,,, N = I, J;, = 1 -1, Jn = I1 n—1
in (20) reduces the ZNNWIPI model into the ZNN model for computing the
Minkowski inverse, called ZNNMI.

Case (3). In the case M = J,, = I,,, N = J,, = I,,, the ZNNWIPI model
produces the ZNN model for computation of the Moore-Penrose inverse and the
Moore-Penrose inverse in an indefinite inner product space which was introduced
in [8], in the case of its existence.

Case (4). In the case when J,,, = I,,, J,, = I, and M, N are two Hermitian
invertible matrices of the order m x m and n X n, respectively, the ZNNWIPI
model produces the ZNN model for computation of the generalized weighted Moore-
Penrose inverse AS,J[)N.

Case (5). In the most general case, J,,, J,, and M, N are arbitrary invertible
matrices of appropriate orders. Then, according to (9), the ZNNWIPI model can
be used in computation of the outer inverse the outer inverse

AWS) 1) priam) = lim (A(H)A() + M) A®R.

Clearly, A(t)ngw),N(Az) satisfies only the matrix equation (2).

5. CONVERGENCE ANALYSIS OF THE ZNNWIPI MODELS

Let us denote by ZNNWIPI-I the ZNN model which is based on the choice
G(t) = A(t)® and by ZNNWIPI-IT the ZNN model established upon the choice
G(t) = At)~ (A(t)TA(t)A(t)™)" A(t)™. In this section, it is proven the global con-
vergence of both the complex neural network models ZNNWIPI-I and ZNNWIPI-II.
To simplify notation, by ZNNWIPI-I(1) and ZNNWIPI-I(2) we denote the model
ZNNWIPI-I with the activation functions H; or Hs, respectively.

5.1. Convergence of the models ZNNWIPI-1

The convergence properties of the complex ZNN models ZNNWIPI-I and
ZNNWIPI-II, defined uniquely in (26), is investigated in this section.
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Convergence of ZNNWIPI-I(1)

Theorem 3. Assume that the time derivatives of the matriz A(t) € C"*" ewxist
and are continuous and uniformly bounded with respect to the time t € [0, +0o0].
Let J,, € C™*™_  J, € C*"™ be two appropriate Hermitian involutions and let
M e Cm™*™ N € C" ™ be two Hermitian invertible matrices. If the condition
o (ADTA®) | ra@w~)) C @ C (0,00) is satisfied, then the state matriz Vi(t) €
C™*™ of the complex neural network model ZNNWIPI-I(1) globally converges to
A(t)%,N-

Proof. Firstly, the limit representation (11) initiates

: ~ ©  _1 ~ (2)
lim (A(t)7A(t) + M) At) v = m (A@)TAR) + AL Az pay=) vawm=)
— A0~

Accordingly, if the replacement V' (t) = Vy(t) — A(t)% ~ 1s used, it follows that

lim E¥(t) = lim (A()™A(t) + M) Vi(t) — A()~

= lim (A(t)A(t) + M) Vi(t) — lim (A()FA() + M) At

= lim (AWTA®R) + M) V().

Therefore, the ZF corresponding to E¥(¢) can be defined as
E~(t) = (A(t)TA(t) + \) V(t).
Then the general pattern E~(t) = —yH(E~(t)) can be expanded into

(Aey~A(t) + A®A®) Va(t) + (AW~ AW®) + AN Vi (1)

(32) _
— —H1 (AR A(L) + A V1 (1)) -

Since E~(t) = Re(E~(t))+Im(E~(t)), the general model E¥(t) = —yH, (E¥(t))
is equivalent to the following conjunctions of two equations in the real numbers
domain:

Re(E~(t)) = —/F(Re(E~ (1)) and Im(E~(t)) = —yF(Im(E~(1))).

The global convergence of ZNNWIPI-I(1) can be verified by means of the following
Lyapunov function candidate:

Lo < IOl _ Tr (B0 =)

(33) 5 5
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The time derivative of L(t) satisfies the following identities:

dr) v (E“ () E(t) + E~(t) B~ (t))

dt 2
= T { (F (Re (B=(1))" — o (Im (B~(1))") (Re (= (1)) + Tm (E=(1)))

+ (Re (B%(t)" —dm (B¥(1)") (F(Re (B*(1))))" + . F(Im (E¥(1))) }

= T {Re (B¥(1))" F (Re (B¥(1))) + Tm (B¥(1))" F (Im (B¥(1)))}.

To make the presentation simpler, let us denote arbitrary (7, j)th element of Re (E¥(t))
by e;; and the (i, j)th element of Im (E~(t)) by e},. Now, according to the assump-
tion that the matrix function F(-) is defined by an appropriate odd and monoton-
ically increasing function f(), it follows that

Tr {Re (E~(t)" F (Re (EX(t))) + Im (E¥(t))" F (Im (E“(t)))}
— Z@ijf(eij) + Zegjf(e;j) >0

and finally
AL(t) [ <0 if EX(t) £0,

dt { =0 if BX(t)=0.
As a conclusion, it follows that dﬁ—f) < 0and dﬁ—?) = 0 if and only if V1 (¢) = 0. On
the basis of the Lyapunov stability theory, E¥(t) = (A(¢)®A(t) + A) Vi(t) — A(t)™
is globally convergent to zero. Therefore,

lim Vi (¢) = lim (A()FA(t) + )" A,
A—0 A—=0

Based on the limiting representation (11), the state matrix V; () globally converges
to A(t)%N under the condition A — 0. O

Convergence of ZNNWIPI-I(2)

Theorem 4. Assume that the time derivatives of the matriz A(t) € CI"™*™ exist
and are continuous and uniformly bounded with respect to the time t € [0, +00].
Let J,, € Cm>xm_ J, € C"™™ be two appropriate Hermitian involutions and let
M e C™*™ et N € C™"™*"™ be two Hermitian invertible matrices. If the condition
0 (A®A|g(a~)) C Q C (0,00) is satisfied, then the state matriz Vi(t) € C™™
of the complex neural network model ZNNWIPI-1(2) is globally convergent to the
time-varying outer inverse A(t)JGVLN, starting from arbitrary initial state V1(0).

Proof. The dynamics initiated by the error function E~(t) is defined by the general
patern ]
E=(t) = —yH2(E7(1)).
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Since H2(E™(t)) = F(|E®(t)]) o exp(tO(E™(t))), the time derivative of the Lya-
punov function candidate (33) is equal to

ar@p) T (B ER(0) + B5(0) B (1))

dt 2
- %fm (B~ Ha (B>(0) + E~()Ha (B~(1)))

_ —%VTr (E“(t)*Hz (E™(t) + (Ez(t)*'H? (Ez(t)))*)

L (Re (Ez(t)*Hg (E~ (t))))
= —Tr {Re [E7 ()" F (|[E7(t)]) o exp (LO(E~(1)))]} -

Further, in view of E¥(t) = |E~(t)| o exp(tO(E™(1))), it follows that

dL(t)

— = 7 Tr{Re[exp (O (ET(1)7) o [EZ (1)) (F (IEZ()]) 0 exp (10 (EZ(1)))]} -

Using once again that F(-) is defined upon the element-wise usage of an odd and
monotonically increasing function f(), the inequality F(|E¥(¢)|) >0, for E¥(t) #
0, can be concluded, which implies that the Lyapunov function L(¢) is negative
definite. Therefore,

E=(t) = (A0~ (0) A1) + M) Va(t) — A6~

converges to the zero matrix starting from arbitrary initial value. Following the
proof of Theorem 3, one can verify that the state matrix V;(¢) globally converges
to A(H)S, y- O

Convergence of ZNNWIPI-II

The model ZNNWIPI-IT which is based on the usage of H; or Hs is denoted
by ZNNWIPI-II(1) or ZNNWIPI-II(2), respectively.

Theorem 5. Assume that the time derivatives of the matriz A(t) € C"*™ exist
and are continuous and uniformly bounded with respect to the time t € [0, +00].
Let J,, € C™*™ J, € C"™" be two appropriate Hermitian involutions and M €
Cmxm N € C"™ be two Hermitian invertible matrices. Assume that the time
derivatives of matrices A(t) and A(t)¥ € C"*™, t € [0,400], exist and they are
continuous and uniformly bounded with respect to the time t. Then the following
statements are valid:

(a) the state matriz Vi(t) € C**™ of the complex neural network model ZNNWIPI-
II(1) globally converges to A(t)?/[’N.

(b) the state matriz V1(t) of the complex neural network model ZNNWIPI-I1(2) is
globally convergent to the time-varying outer inverse A(t)?/[,N.
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Proof. (a) The proof in this case can be completed using the limit representa-
tion (18) and following the proof of Theorem 3. In the essence, the proof is
based on the same value E~(t) defined in (20), where G(t) is defined in (21) as
G(t) = A[)® (AT A(t)A(t)™)" A(t)® instead of G(t) = A(t)~, used in the proof
of Theorem 3.

(b) The second statement can be verified using the limit representation (18) and
following the proof of Theorem 4. In the essence, the proof is based on the
same value E¥(t) defined in (20), where G(¢) is defined in (21) by the expres-
sion G(t) = A@t)® (A()FA(t)A(t)®)" A(t)™ instead of G(t) = A(t)~, used in the
proof of Theorem 4. []

6. NUMERICAL EXAMPLES

Example 1. (a) Consider the time varying matrix from [54]:

1+t t 14t
A(t) = S3(t) = 2 =1+t t
1+t t 1+t

Our intention is to compute the outer inverse which correspond to the signature
matrices

-1 0 0
IJn=Jdn=1 0 1 0| =I,
0 0 1
and invertible matrices
1 1 1 1 0 0
M=]1010], N=]111
0 0 1 0 0 1
It is easy to verify
t+1 —t24t+1 0
A =N"1AM = N J,A*J,, M = —t t2—t—1 0

—t—-1 -1 0

Since
rank(A(t)FA(t)) = rank(A(t)~) = 2,

A(t)gz A%) N (A%) exists. Performing necessary computations in the package Math-
ematica, one can derive

2 ~ = = =
AD)S) 1oy priamy =AM (A~ A AT A(t)
3441 2 0
2 =1
= | B2yt —2 -1 0
et t 0

5112 T — 41
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Let us choose the initial vector v(0) = (1,1,1)T and use the linear activation
function. State variables trajectories of the complex model ZNNWPPI-I(1) with
v =10% and A = 1076 are shown in Figure 1 (a). Blue curves in this figure show
the values corresponding to the solution computed by the model ZNNWPPI-I(1)
and red curves display values corresponding to A(t)%v N

Residual errors

|A®FA® + A0 v;0) - a0

derived by ZNNWPPI-II(1) with v = 108 and A = 107% are shown in Figure 2
(b), where red dots correspond to the linear function f(-), pink pluses indicate
that f(-) is the power-sigmoid function with p = 3 and ¢ = 7 and blue stars are
corresponding to the bipolar-sigmoid function f(-) with ¢ = 10.

10 T T T :
- the first column
1 T T T T T T T T T +  the third column
x - the second column
: ] 10° 4
B10°}
7 =}
2 -
5 =
g g
s 8
T 410
g @1
n
107
-0.2} N ~ i
— - ) 107
04y 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Times (s) Times (s)
(a) The state variables. (b) The residual errors

Figure 1: Trajectories of state variables and residual errors of ZNNWIPI-I(1) in
Example 1, part (a).

In the following test, we consider the complex model ZNNWPPI-II(1) by
using the matrix

AT = A0~ (AW~ A AT A~

Let us choose the initial vector v(0) = (1,1,1)T and use the linear activation
function. State variables trajectories of the complex model ZNNWPPI-II(1) with
v =10% and A = 10~% are shown in Figure 2 (a). Blue curves in this figure show
the values corresponding to the solution computed by the model ZNNWPPI-TI(1)
and red curves display values corresponding to the exact WPPIL.

Residual errors

|Aa®FA® + A1 v (1) - a5, (1)
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derived by ZNNWPPI-II(1) with the linear activation function, v = 108 and A =
10~¢ are shown in Figure 2 (b).

12

the first column
+  the second column
+_the third column

State variables
Errors
.
5
-

Timezs (s) 2 2 Tlmezs (s) :

(a) State variables. (b) Residual errors
Figure 2: (a) Trajectories of state variables; (b) residual errors of ZNNWIPI-II(1)
in Example 1, part (a).
(b) Further, let us choose M = N =TI and J,, = J,, = I 2. This implies

t+1  —t2 —t—1
AT =A@~ = -t t-—1 t
—t—1 ¢t t+1

Performing necessary computations, one can verify

AWM = X (1) = A1)~ (A1)~ ADA@1)™) A(t)~

t4(t43) (3 +42+t43) 2 (P47 +43)
T 110149 {5 — 416+ 10t5 —18t3+19t% —13t2+5t—1 (t—1)(£5+2t5+t3+3t2—2t+1)
_ t2(t43) (4 +2t° —2t° +2t—1) Ao o2 1or_ 1
T £10 449 — 15— 410+ 10¢5 —18t3+ 1982 —13t2+5t—1 (t—1)(£5 25 +t314+3t2—2t+1)
3 (t43) (°+3t°+t41) (243t +t+1)
T {10449 {5 — 410+ 105 — 1863 +1963 —13t2+5t—1  (t—1)(£0+ 265 +t2+3t2—2t+1)
t4(t+3) (°+t2+1+3)

TIT 4104 ¢9 {5 —4¢54 105 — 18624 19¢3 —13¢245t—1
t2(t+3) (t*+2t° 27 2t —1)
T 10149 48 446+ 10¢5 — 1811 +19t3— 1312 +5t— 1
t3(t43) (t°+3t2 +t+1)
T AT T0 4§95 — 410+ 1085 — 182+ 193 — 1362+ bt —1

Simple verification gives rank(A(¢)~) = 2 > rank(X(t)) = 1. Therefore, X (¢) does
not represent the PPI of A. Later, one can verify

rank(A(t)~A(t)A(t)™) = 1 < rank(A(t)™) = 2.

According to Urquhart’s result [32],

@)
X(t) # A » apy~) N (A@)~)-
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Finally,
XAX = A™ (AYAA™)T AV AA™ (A~ AA™)T A~ = A~ (A~ AA™)T A~ = X,

which means that X represents an outer inverse of A.
In such a case, the solution is to use the matrix

Ay =A™ (A~ AA)T A~

instead of A~. Let us choose the initial vector v(0) = (1,1,1)T, by using the lin-
ear function, state variables trajectories of the complex model ZNNPPI-I(1) with
v = 10% and A = 1073 are shown in graphs included in Figure 3. Blue curves in
this figure show the values corresponding to the solution computed by the model
ZNNPPI-I(1) and red curves display values corresponding to the exact PPI. Resid-

'Y

<
"‘K

-0.5

State variables

22

. . . . . . . . .
01 02 03 04 05 06 07 08 09 1
Times (s) X107

Figure 3: Trajectories of state variables in ZNNPPI-I(1) in Example 1, part (b).

ual errors
|Aa®FA® +AD v (1) - a5, 0], 5=1, 2.5,

derived by ZNNPPI-I(1) with v = 10% and A = 10~% are shown in Figure 4, where
red dots correspond to the linear function f(-), pink pluses indicate that f(-) is the
power-sigmoid function with p =5 and ¢ = 7, blue stars are corresponding to the
bipolar-sigmoid function f(-) with ¢ = 5 and green triangles indicate the smooth
power-sigmoid function f(-) with p =5 and ¢ = 11, respectively.

(c) In the case M = N = J,, = J,, = I (which implies A® = A*), the matrix X (t)
reduces to the Moore-Penrose inverse

2 2
—ot* o341 . 2(2¢°-1) —ott o341
4t574t5z2t43+4t372t2+4 —2t6 425 14 —2¢3 12 -2 4t674t5z2t43+4t372t2+4
At = t(t*—t24t+1) _ 44442 op o t(t* =t +t+1)
416415 —2t4 1413 —2t2 4 72t6+23t5+2t472t3+t272 416 —415 —2t1 1 413 —2t2 414
543 441 t(t°+°—t—2) 543 —t+1

416 —415 —2t1+413 —2t2+4 —2t6 42514 —2¢3+¢2 -2 4¢6 — 415 —2t1 4413 —-212+4
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o « linear function
10 : . . . +  bipolar-sigmoid function
smooth power-sigmoid function

+_linear function
2
10
107
o
4 e
g10° , i
w
10°
107
1072 . . . . . . . . . 107 . . . .
0 0.5 1 15 2 25 3 35 4 45 5 0 05 1 15 2 ) 25 3 3.5 4 45 5
Times (s) X107 Times (s) x10°
(a) The first column. (b) The second column
10
+ linear function
+_ power-sigmoid function
107
10
2
210
&

0 05 1 15 2 _ 25 3 35 4 45 5
Times (s)

(¢) The third column

Figure 4: Trajectories of residual errors in ZNNPPI-I(1) in Example 1, part (b).

Let us now make numerical experiments corresponding to A, the initial vec-
tor v(0) = (1,1,1)T and the linear function. State variables trajectories of the
complex model ZNNPPI-I(1) with v = 10® and A\ = 10~% are shown in graphs
included in Figure 5. Blue curves in this figure show the values corresponding to
the solution computed by the model ZNNPPI-I(1) and red curves display values
corresponding to the exact Moore-Penrose inverse.

Residual errors

(AT A + Al v () —a™; B, =1, 2,3,

derived by ZNNPPI-I(1) with v = 10% and A = 10~% are shown in Figure 6, where
red dots correspond to the linear function f(-), pink pluses indicate that f(-) is the
power-sigmoid function with p =5 and ¢ = 7, blue stars are corresponding to the
bipolar-sigmoid function f(-) with ¢ = 5 and green triangles indicate the smooth
power-sigmoid function f(-) with p =5 and ¢ = 11, respectively.
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11 a1 13 33
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Times (s)

Figure 5: Trajectories of state variables in ZNNIPI-I in Example 1, part (c).
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107+ 107
4 4
g 10" 8 10
I i
10° b 10°
10° b 10°
10 L L L L L L L L L 107
0 01 02 03 04 05 06 07 08 09 1 0

Times (s)

(a) The first column. (b) The second column

10 T T T T T . T . T
+  bipolar-sigmoid function
+  power-sigmoid function
FER - linear function i
smooth power-sigmoid function|
107 |
2
S 10" b
w
10° b
10° b
10 . . . . . . . . .
0 01 02 03 04 05 06 07 08 09 1

Times (s)

(¢) The third column

Figure 6: Trajectories of residual errors in ZNNPPI-I in Example 1, part (c).

Example 2. Let us consider the time-varying matrix
isin(2t) icos(2t) —isin(2t)
A(t) = | —icos(2t) dsin(2t) icos(2t)
isin(2t)  icos(2t) 0
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and choose
-1 0 O
M=I,N=1I,, J,=Jmn=_] 0 10
0 01
Then
isin(2t) icos(2t) —isin(2t)
A = A(t)~ = | —icos(2t) isin(2t) icos(2t)
isin(2t)  icos(2t) 0
and
AT = A1) (A1)~ A A ™) A)~
Licos?(2t) csc(t) sec(t) icos(2t) —icsc(2t)
= —icos(2t) —isin(2t) 0 ,
i csc(2t) 0 —icsc(2t)
where

csc(t) = 1/sin(t), cot(t) = 1/ tan(t).

The Moore-Penrose inverse of A(t), corresponding to the case J, = J,, = I, is
equal to
icos(2t) cot(2t) icos(2t) —icsc(2t)
A(t)T = —icos(2t) —isin(2t) 0
i csc(2t) 0 —icsc(2t)

State variables trajectories derived by taking the initial vector v(0) = (1,1,1)"
in the complex model ZNNMI(1) with v = 6 x 10* and A = 107% are displayed in
graphs included in Figure 7. Blue curves in these figures show the values corre-
sponding to the solution computed by the model ZNNMI-I(1) and red curves display
values corresponding to the exact Minkowski inverse A(t)® = A(¢)M. Figures 7
(a), (c) and (e) mean that real parts of all entries in the first, second and the third
column, respectively, are zeros in this case.

Trajectories of residual errors || (A(t)¥A(t) + M) V(t) — A(t)™||r, generated
by using the ZNNMI-I with type I activation functions, A = 10~3 and v = 10° are
shown in Figure 8 (a). The red dots mean that f(-) is linear, pink pluses denote
power-sigmoid function f(-) with p = 3 and ¢ = 3, blue stars indicate the choice
of bipolar-sigmoid function f(-) with ¢ = 3 and green triangles suggest that f(-) is
smooth power-sigmoid function with p = 3 and ¢ = 5, respectively.

Trajectories of residual errors || (A(t)¥A(t) + AI) V(t) — A(¢)™|| r, derived by
employing the ZNNMI-I with type II activation functions, A = 102 and ~ = 10°
are shown in Figure 8 (b), where red dots indicate that f(-) is linear function,
pink pluses denote the power-sigmoid function f(-) with p = 3 and ¢ = 5, blue
stars denote bipolar-sigmoid function f(-) with ¢ = 3 and green triangles represent
values derived by choosing the smooth power-sigmoid function f(-) with p = 3 and
q = 11, respectively.
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Figure 7: Trajectories
2.

of the state variables of the model ZNNMI-I(1) in Example
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107k

Errors

107

‘smooth power-sigmoid function

10°F - 1 — 10°F 1

10° oy o 107 = =
10 10 10 10 10 10
Times (s) Times (s)

(a) Type I activation functions. (b) Type II activation functions

Figure 8: Trajectories of residual errors of ZNNMI-I with two types of activation
functions in Example 2.

Example 3. Consider the matrix

t+6 t+5 t+4 t+3 t+2 t+1]
t+5 t+5 t+4 t+3 t+2 t+1
t+4 t+4 t+4 t+3 t+2 t+1
Ast)=| t+3 t+3 t+3 t+3 t+2 t+1
t+2 t+2 t4+2 t+2 t+1 ¢t
t+1 t+1 t+1 t+1 ¢ t—1
t t t t t—1 t—2

(a) In the case

T e I A e I\ Ay oy
0 I3

the PPI of Ag(t) is equal to

1 -1 0 0 0 0 0
12 -1 0 0 0 0
0 -1 2  -L 2 1 1
®_ 10 5 1 5
As(?) 0 0 —F dEa-on fessy e L(9t —4)
0 0o =1 1 1 _1
3 3 6 6
1 1 1 1 1
0 0 L Loi-4) LBt-8) L(—t—4) L(-9t—16)

The Moore-Penrose inverse of Ag(t) is equal to Ag(t)T = Ag(t)®. Take the
initial vector v(0) = (0,0,0,0,0,0)™. State variables trajectories of the ZNNPPI-I
with f(-) is linear, v = 10% and A = 107° are shown in Figure 9 (a).

Let Z(t) = |[(A@®)®A(t)+ )V (t) — A(t)®| - Trajectories of relative errors
%, derived by employing the model ZNNPPI-I(1), A = 10=¢ and v = 10®
are shown in Figure 9 (b), where Z(¢)(1) denotes the first component of Z(t),
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red dots indicate the linear function f(-), where red curves indicate that f(-) is
linear function, pink curves denote the power-sigmoid function f(-) with p = 5 and
g = 10, blue curves denote bipolar-sigmoid function f(-) with ¢ = 11 and green
curves represent values derived by choosing the smooth power-sigmoid function f(-)
with p = 7 and g = 11, respectively.

ipolar-sigmoid function
mooth power-sigmoid function

+ power-sigmoid function

- linear function

State variables
o
o

. . . . 12 L L L L i T il
0 02 0.4 0.6 08 1 %01 o0z 03 04 05 06 07 08 08 1
Times (s) x10° Times (s) x10°

(a) State variables. (b) Residual errors

Figure 9: Trajectories of state variables and residual errors of the model ZNNPPI-I
in Example 3, part (a).

(b) Further, continue Example 3 with the metric tensors chosen as

100000
000010
001000

Tn=B256 =19 0010 0]

010000
000001
(100 0 0 0 0]
010 0 0 0 0
001 0 0 0 0
Jmn=1000 -1 0 0 0 |=I.
000 0 -1 0 0
000 0 0 -1 0
(000 0 0 0 -1
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In this case,

1 -1 0 0 0 0 0

-1 2 -1 0 0 0 0

0 -1 2 _ _2 _1 1
Ag(t)” = 3 1.g0 6-1 1 1 (ap

-1 2 -3 508-3t) %t S 50 (3t +2)

2 -4 1 1 % _%

1 1 —6 1 1
-1 2 —3 550Bt-8) ¥ H(—t—4) 55(-3t—2)

Let G(t) = AF = A(t)¥(A(t)®A(t)A(t)®)TA(t)=. Take the initial vector v(0) =
(0,0,0,0,0,0)T. State variables trajectories of the ZNNPPI-II with f(-) is linear,
v =108 and A = 107° are shown in Figure 10 (a).

Let Z(t) = |(G@t)A@®)+A)V(t) — G(¢)7||p. Trajectories of relative errors
m, derived by employing the model ZNNPPI-II(1), A = 1075 and v = 108 are
shown in Figure 10 (b), where Z(¢)(1) denotes the first component of Z(t), red
dots indicate the linear function f(-), where red curves indicate that f(-) is linear
function, pink curves denote the power-sigmoid function f(-) with p =3 and ¢ =4
and green curves represent values derived by choosing the smooth power-sigmoid
function f(-) with p =7 and ¢ = 11, respectively.

Z(t)

State variables

0.1

0.2

03

0.4

05
Times (s)

0.6

0.7

+ linear function
+  power-sigmoid function

smooth power-sigmoid function

0.5

15
Times (s)

2 25

(a) State variables. (b) Residual errors

Figure 10: Trajectories of state variables and residual errors of ZNNPPI-II(1) in
Example 3, part (b).

7. CONCLUSION

We investigate generalizations of Penrose equations in indefinite inner prod-
uct spaces. Essentially, various generalizations of the weighted Mooore-Penrose
inverse are introduced, investigated and classified. In the widest sense, the notion
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of the weighted indefinite pseudoinverse (WIPI) related to two Hermitian invert-
ible matrices and two Hermitian involuntary matrices, is introduced. It is shown
that various generalizations of the weighted Moore-Penrose inverse and the Moore-
Penrose, so far considered in the literature, are appearances of the WIPI general-
ized inverses. In the case when Hermitian involuntary matrices become Minkowski
matrices, the WIPI reduces to known notion of the weighted Minkowski inverse
(WMI), investigated in [9, 53].

Full-rank and limit representations of the WIPI and the WMI are investi-
gated. The WIPI and, particular, the WPPI and WMI are represented as a partic-
ular outer inverse with prescribed range and null space. Main properties of these
generalized inverses are investigated.

An application of various pseudo-Euclidean psudoinverses (PPI) in solving
different types of indefinite least-squares problems is presented.

New ZNN model, called ZNNWIPI, for computing these generalized inverses
is developed on the basis of full-rank and limiting representations of WIPI gener-
alized inverses. Convergence behavior of the proposed ZNNWIPI model is investi-
gated. Illustrative numerical results are presented.
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