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The main purpose of this paper is to present closed integral form expres-

sions for the Mathieu-type a-series and for the associated alternating ver-

sions whose terms contain a generalized p–extended Gauss’ hypergeometric

function. Related bounding inequalities for the p–generalized Mathieu–type

series are also obtained. Finally, a set of various (known or new) special cases

and consequences of the results earned are presented.

1. INTRODUCTION AND MOTIVATION

Various extensions of Gauss’ hypergeometric function and other special func-
tions were investigated recently by several authors, consult for instance [5]-[10],
[15, 16], [19]–[22]. The importance of these functions is that they inherit most of
the properties of the original functions and provide new relations between differ-
ent special functions. In particular, the generalized Gauss hypergeometric function
[29, p. 350, Eq. (1.13)] (see also, [14, p. 631, Eq. (1)]) and generalized confluent
hypergeometric function [2, p. 3695, Eq. (9)] are defined as follows:

(1.1) F (α,β;κ,µ)
p (a, b; c; z) =

∞∑
n≥0

(a)n
B

(α,β)
p;κ,µ(b+ n, c− b)

B(b, c− b)
zn

n!
,
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Mathieu-type series of unified Gaussian functions 139

(p, κ, µ ≥ 0 ; min{<(α), <(β)} > 0; <(c) > <(b) > 0, |z| < 1);

(1.2) Φ(α,β;κ,µ)
p (b; c; z) =

∞∑
n≥0

B
(α,β)
p;κ,µ(b+ n, c− b)

B(b, c− b)
zn

n!
,

(p, κ, µ ≥ 0 ; min{<(α), <(β)} > 0; <(c) > <(b) > 0, |z| <∞),

where B
(α,β)
p;κ,µ(x, y) is the generalized Beta function [29] (see also, [14]) defined by

B(α,β)
p;κ,µ(x, y) =

∫ 1

0

tx−1 (1− t)y−1
1F1

(
α;β;− p

tκ(1− t)µ
)

dt ,

(<(p), κ, µ ≥ 0; min{<(α), <(β)} > 0,<(x) > −<(κα), <(y) > −<(µα)).

Here

1F1(a, b; z) =
∑
n≥0

(a)n
(b)n

zn

n!
,

stands for the Kummer’s function or the confluent hypergeometric function, see [1,
p. 509]1. The cases of (1.1) when κ = µ correspond to the generalized hypergeo-
metric function introduced by Parmar [18, p. 44]:

F (α,β;µ)
p (a, b; c; z) =

∞∑
n≥0

(a)n
B

(α,β;µ)
p (b+ n, c− b)

B(b, c− b)
zn

n!
,

(p ≥ 0, µ ≥ 0; min{<(α), <(β)} > 0; <(c) > <(b) > 0, |z| < 1),

which again, in case α = β and κ = µ in (1.1), reduces to the definition by Lee et
al. [12]:

F (µ)
p (a, b; c; z) =

∞∑
n≥0

(a)n
B

(µ)
p (b+ n, c− b)

B(b, c− b)
zn

n!
,

(p, µ ≥ 0 ; <(c) > <(b) > 0, |z| < 1).

Yet another case κ = µ = 1 in (1.1) was studied by Özergin et al. [17]

F (α,β)
p (a, b; c; z) =

∞∑
n≥0

(a)n
B

(α,β)
p (b+ n, c− b)

B(b, c− b)
zn

n!
,

(p ≥ 0; min{<(α), <(β)} > 0; <(c) > <(b) > 0, |z| < 1).

In a recent article, Choi et al. [9] considered the general Mathieu–type series and
their alternating variants whose terms contain the (p, q)–extended Gaussian hy-
pergeometric function Fp,q(z), and in turn, when p = q the p–extended Gaussian
hypergeometric function Fp(z) and obtained the closed integral form expressions

1We point out that there is a wide class of elementary and special functions covered by Kum-
mer’s 1F1, consult for instance [1, pp. 509-510, §13.6. Special cases].
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for the considered series and bilateral bounding inequalities. For various other in-
vestigations involving other special functions, the interested reader may be referred
to several recent papers on the subject (see, for instance [22–28] and the references
cited therein). Here we are interested in generalizing the integral expressions for
the Mathieu–type series and its alternating variants whose terms contain the gen-

eralized p–extended Gauss’ hypergeometric function F
(α,β;κ,µ)
p (z) which extends

the results of the so–called p–extended Gaussian hypergeometric function Fp(z)
recently developed by Choi et al. [9]. These functions are built by intervention
in the kernel replacing the occurring p–extended Beta function by its generalized

p–variant B
(α,β)
p;κ,µ(x, y).

Now, extending the Mathieu–type series studied in [9] by introducing the

F
(α,β;κ,µ)
p (a, b; c; z) kernel instead of the Fp(z) in the summands for p, κ, µ ≥ 0 and

min{<(α), <(β)} > 0, we define the Mathieu–type a–series Fλ,η and its alternating

variant F̃λ,η in the form of the series

(1.3) Fλ,η(F (α,β;κ,µ)
p ;a; r) :=

∑
n≥1

F
(α,β;κ,µ)
p (λ, b; c; − r2

an
)

aλn(an + r2)η

where λ, η, r > 0; <(c) > <(b) > 0, and in the same range of parameters:

(1.4) F̃λ,η(F (α,β;κ,µ)
p ;a; r) :=

∑
n≥1

(−1)n−1F
(α,β;κ,µ)
p (λ, b; c; − r2

an
)

aλn(an + r2)η
.

Here, and in what follows, the real sequence a = (an)n≥1 is the restriction of an
increasing function a : R+ 7→ R+ such that a(x)|x∈N = a. The main purposes of
this paper are to obtain integral representations and allied bounding inequalities
for these functions in the widest possible range of the parameters involved.

2. INTEGRAL REPRESENTATIONS OF Fλ,η(F
(α,β;κ,µ)
P ) AND

F̃λ,η(F
(α,β;κ,µ)
P )

In this section, we first give the closed integral form expressions for the series

Fλ,η(F
(α,β;κ,µ)
p ;a; r) and F̃λ,η(F

(α,β;κ,µ)
p ;a; r) in the form of linear combinations of

two principal integrals. Then we list certain special cases of our first main result.

Theorem 1. Let λ > 0, η > 0, r > 0 and the real sequence a = (an)n≥1 monotone
increases and tends to ∞. Then for p ≥ 0, κ ≥ 0, µ ≥ 0 and min{<(α), <(β)} > 0,
we have

Fλ,η(F (α,β;κ,µ)
p ;a; r) = λ I (α,β;κ,µ)

p (λ+ 1, η, a1) + η I (α,β;κ,µ)
p (λ, η + 1, a1)

(2.5)

F̃λ,η(F (α,β;κ,µ)
p ;a; r) = λ Ĩ (α,β;κ,µ)

p (λ+ 1, η, a1) + η Ĩ (α,β;κ,µ)
p (λ, η + 1, a1) ,

(2.6)
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where for all <(c) > <(b) > 0

I (α,β;κ,µ)
p (λ, η, a1) =

∫ ∞
a1

F
(α,β;κ,µ)
p (λ, b; c; − r

2

x ) [a−1(x)]

xλ(x+ r2)η
dx(2.7)

Ĩ (α,β;κ,µ)
p (λ, η, a1) =

∫ ∞
a1

F
(α,β;κ,µ)
p (λ, b; c; − r

2

x ) sin2
(
π
2 [a−1(x)]

)
xλ(x+ r2)η

dx(2.8)

and a−1 denotes the inverse of a while [a−1] stands for the integer part of a−1.

Proof. Consider the Laplace transform of the function tλ−1Φ
(α,β;κ,µ)
p (b; c; z) [2, p.

3695, Eq. (9)] by using the definition (1.1). For all real ω it equals

(2.9) F (α,β;κ,µ)
p

(
λ, b; c;

ω

z

)
=

zλ

Γ(λ)

∫ ∞
0

e−zttλ−1 Φ(α,β;κ,µ)
p (b; c;ωt) dt.

Taking ξ = an + r2 in the gamma function formula

Γ(η) ξ−η =

∫ ∞
0

e−ξttη−1 dt, (<(ξ),<(η) > 0),

after rearrangement ω = −r2, z = an in (2.9), the integral (2.7) becomes

I (α,β;κ,µ)
p (λ, η) =

∫ ∞
0

∫ ∞
0

e−r
2stλ−1sη−1

Γ(λ)Γ(η)

∑
n≥1

e−an(t+s) Φ(α,β;κ,µ)
p (b; c;−r2t) dt ds.

Using the Cahen formula [4] for summing up the resulting Dirichlet series by virtue
of the technique developed in [22, 24], we conclude

Da(t+ s) =
∑
n≥1

e−an(s+t) = (s+ t)

∫ ∞
a1

e−(t+s)x [a−1(x)] dx .

This gives

I (α,β;κ,µ)
p (λ, η) =

1

Γ(λ)Γ(η)

∫ ∞
0

∫ ∞
0

∫ ∞
a1

e−(r2+x)s−tx(t+ s)tλ−1sη−1[a−1(x)]

× Φ(α,β;κ,µ)
p (b; c;−r2t) dt ds dx =: It + Is ,(2.10)

where

It =

∫ ∞
0

(∫ ∞
a1

(∫ ∞
0

Φ
(α,β;κ,µ)
p (b; c;−r2t)

Γ(η)Γ(λ)ext
tλ dt

)
e−xs[a−1(x)] dx

)
e−r

2ssη−1 ds

=
λ

Γ(η)

∫ ∞
a1

(∫ ∞
0

e−(x+r2)ssη−1 ds

)
[a−1(x)]

xλ+1
F (α,β;κ,µ)
p

(
λ+ 1, b; c; −r

2

x

)
dx

= λ

∫ ∞
a1

F (α,β;κ,µ)
p

(
λ+ 1, b; c;−r

2

x

)
[a−1(x)] dx

xλ+1(x+ r2)η
= λ I (α,β;κ,µ)

p (λ+ 1, η) .

(2.11)
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In a similar way, we get

Is = η

∫ ∞
a1

[a−1(x)]

(x+ r2)η+1

(∫ ∞
0

e−xttλ−1

Γ(λ)
Φ(α,β;κ,µ)
p (b; c;−r2t) dt

)
dx

= η

∫ ∞
a1

[a−1(x)]

xλ(x+ r2)η+1
F (α,β;κ,µ)
p

(
λ, b; c; −r

2

x

)
dx = η I (α,β;κ,µ)

p (λ, η + 1).

(2.12)

Now, applying (2.11) and (2.12) to (2.10) we get the representation (2.5).

The derivation of (2.6) is similar to this proving procedure. As to the al-
ternating Dirichlet series Da(x) integral form, having in mind again the Cahen
formula, we have [24, 27]

D̃a(x) =
∑
n≥1

(−1)n−1e−an(x) = x

∫ ∞
a1

e−xtÃ(t) dt,

and therefore

D̃a(x) = x

∫ ∞
a1

e−xt sin2
(π

2
[a−1(x)]

)
dt,

since the counting function turns out to be

Ã(t) =
∑

n : an≤t

(−1)n−1 =
1− (−1)[a−1(t)]

2
= sin2

(π
2

[a−1(t)]
)
.

Hence, because

D̃a(t+ s) = (t+ s)

∫ ∞
a1

e−(t+s)x sin2
(π

2
[a−1(t)]

)
dx,

we conclude (2.6) by the obvious remaining steps.

Now, in the case κ = µ, Theorem 1 reduces to the following

Corollary 1.1. Let λ > 0, η > 0, r > 0, and let the real sequence a monotone
increases and tends to ∞. Then for p ≥ 0, µ ≥ 0 and min{<(α), <(β)} > 0, we
have

Fλ,η(F (α,β;µ)
p ;a; r) = λ J (α,β;µ)

p (λ+ 1, η, a1) + η J (α,β;µ)
p (λ, η + 1, a1)

F̃λ,η(F (α,β;µ)
p ;a; r) = λ J̃ (α,β;µ)

p (λ+ 1, η, a1) + η J̃ (α,β;µ)
p (λ, η + 1, a1) ,

where

J (α,β;µ)
p (λ, η, a1) =

∫ ∞
a1

F
(α,β;µ)
p (λ, b; c; − r

2

x )[a−1(x)]

xλ(x+ r2)η
dt

J̃ (α,β;µ)
p (λ, η, a1) =

∫ ∞
a1

F
(α,β;µ)
p (λ, b; c; − r

2

x ) sin2
(
π
2 [a−1(x)]

)
xλ(x+ r2)η

dt .
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Again, in the case α = β and κ = µ, Theorem 1 reduces to the following

Corollary 1.2. Let λ > 0, η > 0, r > 0, and let the real sequence a monotone
increases and tends to ∞. Then for p ≥ 0, µ ≥ 0, we have

Fλ,η(F (µ)
p ;a; r) = λ J (µ)

p (λ+ 1, η, a1) + η J (µ)
p (λ, η + 1, a1)

F̃λ,η(F (µ)
p ;a; r) = λ J̃ (µ)

p (λ+ 1, η, a1) + η J̃ (µ)
p (λ, η + 1, a1) ,

where

J (µ)
p (λ, η, a1) =

∫ ∞
a1

F
(µ)
p (λ, b; c; − r

2

x ) [a−1(x)]

xλ(x+ r2)η
dt

J̃ (µ)
p (λ, η, a1) =

∫ ∞
a1

F
(µ)
p (λ, b; c; − r

2

x ) sin2
(
π
2 [a−1(x)]

)
xλ(x+ r2)η

dt .

Furthermore, in the case κ = µ = 1, Theorem 1 becomes

Corollary 1.3. Let λ > 0, η > 0, r > 0, and let the real sequence a monotone
increases and tends to ∞. Then for p ≥ 0 and min{<(α), <(β)} > 0, we have

Fλ,η(F (α,β)
p ;a; r) = λ J (α,β)

p (λ+ 1, η, a1) + η J (α,β)
p (λ, η + 1, a1)

F̃λ,η(F (α,β)
p ;a; r) = λ J̃ (α,β)

p (λ+ 1, η, a1) + η J̃ (α,β)
p (λ, η + 1, a1) ,

where

J (α,β)
p (λ, η, a1) =

∫ ∞
a1

F
(α,β)
p (λ, b; c; − r

2

x ) [a−1(x)]

xλ(x+ r2)η
dt

J̃ (α,β)
p (λ, η, a1) =

∫ ∞
a1

F
(α,β)
p (λ, b; c; − r

2

x ) sin2
(
π
2 [a−1(x)]

)
xλ(x+ r2)η

dt .

Remark 1. The special case for α = β and κ = µ = 1 reduces to the known result
for the p–extended Gauss hypergeometric function Fp [9]. When p = 0 we have the
claim of Theorem 1 for the Gaussian 2F1 which is studied in [22].

3. BOUNDING INEQUALITIES FOR THE P–GENERALIZED
MATHIEU–TYPE SERIES

Very recently Luo et al. [14, Remark 2.6] have established an upper bounds

for the generalized p–extended Beta function B
(α,β)
p;κ,µ(x, y). Namely, we have that

for all real parameters p, κ, µ, α, β > 0, and x, y > 0, we have

(3.13) B(α,β)
p;κ,µ(x, y) ≤ Ωα,βκ,µ(p) B(x, y) ,
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where

Ωα,βκ,µ(p) = 1F1

(
α; β; − (κ+ µ)κ+µ

κκ µµ
p
)
.

We report here the following results [14, Corollary 2.7]

F (α,β;κ,µ)
p (a, b; c; z) ≤ Ωα,βκ,µ(p) 2F1(a, b; c; z)(3.14)

Φ(α,β;κ,µ)
p (b; c; z) ≤ Ωα,βκ,µ(p) Φ(b; c; z) ,(3.15)

where p, κ, µ, α, β > 0, and x, y > 0; c > b > 0 and |z| < 1. Next, we need
also a certain Luke’s upper bound exposed in [13] for the Gaussian hypergeometric
function. Precisely, there holds [13, p. 52, Eq. (4.7)]

(3.16) 2F1(a, b; c;−z) < 1− 2ab(c+ 1)

c(a+ 1)(b+ 1)

[
1− 2(c+ 1)

2(c+ 1) + (a+ 1)(b+ 1) z

]
.

(b ∈ (0, 1], c ≥ a > 0; z > 0) .

For the sake of simplicity we introduce the shorthand notation

Ua(λ, η) :=

∫ ∞
a1

[a−1(x)]

xλ(x+ r2)η
dx.

In the sequel we consider a class of Mathieu–type series (1.3) and (1.4) in which
the defining functions a : R+ 7→ R+ behave so, that Ua(λ, η, s) converges.

Theorem 2. Let λ ∈ (0, 1], η > 0 and let the real sequence a = (an)n≥1 monotone
increases and tends to∞. Then for all r ∈ (0,

√
a1 ), p, κ, µ, α, β > 0 and c > b > 0,

we have

Fλ,η(F (α,β;κ,µ)
p ;a; r) ≤ λ Ωα,βκ,µ(p)

{(
1− 2(λ+ 1)b(c+ 1)

c(λ+ 2)(b+ 1)

)
Ua(λ+ 1, ε)

+
4(λ+ 1)b(c+ 1)2 Ua(λ, ε)

c(λ+ 2)(b+ 1) [(λ+ 2)(b+ 1)r2 + 2(c+ 1)a1]

}

+ η Ωα,βκ,µ(p)

{(
1− 2λb(c+ 1)

c(λ+ 1)(b+ 1)

)
Ua(λ, ε+ 1)

+
4λb(c+ 1)2 Ua(λ− 1, ε+ 1)

c(λ+ 1)(b+ 1) [(λ+ 1)(b+ 1)r2 + 2(c+ 1)a1]

}
.

Moreover, for all λ+ η > 1; r ∈ (0,
√
a1 ), p, κ, µ, α, β > 0 and c > b > 0 we have

F̃λ,η(F (α,β;κ,µ)
p ;a; r)

≤ λΩα,βκ,µ(p)

{(
1− 2(λ+ 1)b(c+ 1)

c(λ+ 2)(b+ 1)

)
a−λ−η1

λ+ η
2F1

(
η, λ+ η; η + 1;− r

2

a1

)
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+
4(λ+ 1)b(c+ 1)2

c(λ+ 2)(b+ 1)

a1−λ−η
1 2F1

(
η, λ+ η − 1; η + 1;− r2

a1

)
(λ+ η − 1)[(λ+ 2)(b+ 1)r2 + 2(c+ 1)a1]

}

+ ηΩα,βκ,µ(p)

{(
1− 2λb(c+ 1)

c(λ+ 1)(b+ 1)

)
a−λ−η1

λ+ η
2F1

(
η + 1, λ+ η; η + 2;− r

2

a1

)

+
4λb(c+ 1)2

c(λ+ 1)(b+ 1)

a1−λ−η
1 2F1

(
η + 1, λ+ η − 1; η + 2;− r2

a1

)
(λ+ η − 1)[(λ+ 1)(b+ 1)r2 + 2(c+ 1)a1]

}
.

(3.17)

Proof. One starts with the relation (2.5)

Fλ,η(F (α,β;κ,µ)
p ;a; r) = λ Ip(λ+ 1, η, a1) + η Ip(λ, η + 1, a1) ,

in which we bound from above the auxiliary integral Ip described in (2.7). To do

this we quote that F
(α,β;κ,µ)
p (a, b; c; z) > 0 for all a, b, c > 0 and all negative values

of z, compare (3.16). Indeed, it is enough to consider the integral expression (2.7)

by making use of the generalized p–extended Beta function B
(α,β)
p;κ,µ(x, y) where now

the parameters involved become real in the definition (1.1)

F (α,β;κ,µ)
p (a, b; c; z) =

1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1

(1− zt)a 1F1

(
α;β;− p

tκ(1− t)µ
)

dt .

More precisely here and in what follows the parameters p, κ, µ ≥ 0; min{α, β} > 0;
c > b > 0 and −1 < z < 1. Therefore, by virtue of (3.14) and (3.16) it follows

Ip(λ, η, a1) =

∫ ∞
a1

F
(α,β;κ,µ)
p (λ, b; c; − r

2

x )[a−1(x)]

xλ(x+ r2)η
dx

≤ Ωα,βκ,µ(p)

∫ ∞
a1

2F1 (λ, b; c; − r
2

x )[a−1(x)]

xλ(x+ r2)η
dx

≤ Ωα,βκ,µ(p)

{(
1− 2λb(c+ 1)

c(λ+ 1)(b+ 1)

)∫ ∞
a1

[a−1(x)]

xλ(x+ r2)η
dx

+
4λb(c+ 1)2

c(λ+ 1)(b+ 1)

∫ ∞
a1

x1−λ [a−1(x)] dx

(x+ r2)η [(λ+ 1)(b+ 1)r2 + 2(c+ 1)x]

}

≤ Ωα,βκ,µ(p)

{(
1− 2λb(c+ 1)

c(λ+ 1)(b+ 1)

)
Ua(λ, ε)

+
4λb(c+ 1)2 Ua(λ− 1, ε)

c(λ+ 1)(b+ 1) [(λ+ 1)(b+ 1)r2 + 2(c+ 1)a1]

}
.

The rest is obvious. Next, we recall (2.6):

F̃λ,η(F (α,β;κ,µ)
p ;a; r) = λ Ĩp(λ+ 1, η, a1) + η Ĩp(λ, η + 1, a1) .
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By the positivity of the integrand of (2.8) and in view of (3.14) we have

Ĩp(λ, η) ≤
∫ ∞
a1

F
(α,β;κ,µ)
p (λ, b; c; − r

2

x )

xλ(x+ r2)η
dx ≤ Ωα,βκ,µ(p)

∫ ∞
a1

2F1 (λ, b; c; − r
2

x )

xλ(x+ r2)η
dx .

In turn, with the aid of (3.16) we conclude

Ĩp(λ, η) ≤ Ωα,βκ,µ(p)

{(
1− 2λb(c+ 1)

c(λ+ 1)(b+ 1)

)∫ ∞
a1

dx

xλ(x+ r2)η

+
4λb(c+ 1)2

c(λ+ 1)(b+ 1)

∫ ∞
a1

dx

xλ−1(x+ r2)η [(λ+ 1)(b+ 1)r2 + 2(c+ 1)x]

}
.

Using [10, p. 313, Eq. 3.194 1.] for λ+ η > 1 we have∫ ∞
a1

dx

xλ(x+ r2)η
=

∫ 1
a1

0

tλ+η−2

(1 + r2t)η
dt =

a1−λ−η
1

λ+ η − 1
2F1

(
η, λ+ η − 1; η + 1;− r

2

a1

)
,

which for λ+ η > 2 implies∫ ∞
a1

dx

xλ−1(x+ r2)η [(λ+ 1)(b+ 1)r2 + 2(c+ 1)x]

≤
a2−λ−η

1 2F1

(
η, λ+ η − 2; η + 1;− r2

a1

)
(λ+ η − 2)[(λ+ 1)(b+ 1)r2 + 2(c+ 1)a1]

.

Collecting these formulae we get the upper bound

Ĩp(λ, η) ≤ Ωα,βκ,µ(p)

{(
1− 2λb(c+ 1)

c(λ+ 1)(b+ 1)

)
1

aλ+η−1
1 (λ+ η − 1)

× 2F1

(
η, λ+ η − 1; η + 1;− r

2

a1

)
+

4λb(c+ 1)2

c(λ+ 1)(b+ 1)

a2−λ−η
1 2F1

(
η, λ+ η − 2; η + 1;− r2

a1

)
(λ+ η − 2)[(λ+ 1)(b+ 1)r2 + 2(c+ 1)a1]

}
.

Now, obvious steps lead to the asserted upper bound (3.17).

Remark 2. Specifying the parameters in (3.13), we arrive at corollaries of The-
orem 2. However, the upper bound expressions for related Mathieu–type series

and its alternating variants Fλ,η(F
(α,β;µ)
p ;a; r), F̃λ,η(F

(α,β;µ)
p ;a; r), Fλ,η(F

(µ)
p ;a; r),

F̃λ,η(F
(µ)
p ;a; r) and Fλ,η(F

(α,β)
p ;a; r), F̃λ,η(F

(α,β)
p ;a; r) we leave to the interested

reader.

4. DISCUSSION
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Our research methodology is based on the following steps. We consider a
Mathieu–type series with terms containing special functions (Gaussian hyperge-
ometric function [22], Fox–Wright generalized hypergeometric pΨq function [26],
generalized hypergeometric function pFq and Meijer G function [27], Fox’s H func-
tion [24]) which all possess integral representations. The parameters and the con-
stitutional coefficients families permit either series convergence and summation –
integration interchange. Mutatis mutandis, by this procedure the ’inner’ Dirichlet–
series sum in the integrand becomes summable. Moreover, with the help of the
Cahen–formula we next deduce a Laplace–integral expression; for instance, dis-
plays (2.7), (2.8) in Theorem 1 are illustrative examples. Finally, the resulting
integrand’s structure enables to construct contiguous relations by the related out-
put integrals, see (2.5) and (2.6).

It is worth to mention the Mathieu–type series of more general structure like
Mathieu (a,λ)–series introduced by Pogány in [23] and the a–series in [28] which
integral expressions were obtained by similar derivation process.

An open problem can be posed concerning the existence of a generic (appro-

priately convergent) power series instead of F
(α,β;κ,µ)
p precised by (1.1) in (1.3) and

subsequently in (1.4) which use could lead to general formulae similar to (2.7), (2.8).
By these efforts the re–formulated results in terms of generic series S(x) =

∑
n gnx

n,

say, would contain among others the case of F
(α,β;κ,µ)
p considered in Theorem 1 as

an obvious corollary. Unfortunately, the use of a generic power series needs at
least the highly strong assumption by which S(x) should have an suitable integral
expression by which we could follow our consideration methodology exposed above.

However, these goals heavily overgrow the purposes and tasks of the recent
article, we leave it for another address.
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