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Using the Bernstein theorem we prove the complete monotonicity of the three
parameter Mittag–Leffler function Eγα,β(−w) for w ≥ 0 and suitably con-
strained parameters α, β and γ.

1. INTRODUCTION

The three parameter generalization of the Mittag-Leffer function [6], in the
literature devoted to the fractional calculus and its applications disseminated also
as the Prabhakar function, was introduced by T. R. Prabhakar [26] as

Eγα,β(z) =
∑
r≥0

(γ)r
r! Γ(αr + β)

zr, z ∈ C, <(α) > 0,

where the Pochhammer symbol (γ)r denotes Γ(γ + r)/Γ(γ). For β = γ = 1 it
reduces to the standard Mittag-Leffler function Eα(z) considered firstly in [19, 20,
21], while for γ = 1 becomes the two parameter Mittag–Leffler function Eα,β(z)
studied by Wiman in 1905 [40]. From the other point of view the three parameter
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Mittag-Leffler function is considered a representative of the plethora of generalized
hypergeometric functions - namely a special type of the Wright Ψ-function [2, 41,
42] or the multivariate Mittag-Leffler functions [23].

Properties of functions belonging to the Mittag-Leffler family, among them
those concerning complete monotonicity (CM) for the first time studied in classical
papers by H. Pollard [25] and W. R. Schneider [34], are interesting both for math-
ematicians and physicists. For the first of these communities various Mittag-Leffler
functions are important objects in the theory and applications of special functions
[22, 35, 36], fractional calculus and fractional differential equations [6, 16], while
the representatives of the second community successfully use Mittag-Leffler func-
tions to describe phenomena exhibiting the memory-dependent time evolution, like
dielectric relaxation [3, 11] and/or viscoelasticity [10, 16, 29, 30, 31, 32]. The
CM enables using the Bernstein theorem (see for instance [39, Theorem 12a], [33,
Theorem 1.4]) which concerns correspondence between CM functions and Laplace
transforms of probability measures on R+. A physical interpretation comes from
the time decay patterns which, if given by CM functions of time, may be represented
as effects of summing up elementary Debye (exponential) decays. The examples
are provided by phenomenological relaxation patterns belonging to the class of
Havriliak–Negami-like models used to describe experimental data [3, 7, 12].

Properties of the function t 7→ E γ
α,β(t;x) := tβ−1Eγα,β(−xtα), bearing the

name Prabhakar kernel [4], are recently the subject of extensive investigations
[1, 5, 17, 38]. These efforts result, among others, in showing that this function
is CM for x, t ≥ 0 and parameters range of 0 < αγ ≤ β ≤ 1 with 0 < α, β, γ ≤ 1.
Proving the CM property of E γ

α,β(t;x) the authors of [1, 17, 38] have treated this

function as a whole and have not investigated the CM of the function Eγα,β(−w)
itself, leaving a gap between their results and the classical ones collected in the
papers of Pollard [25] and Schneider [34] who demonstrated that the Mittag-Leffler
Eα(−w) function for w ≥ 0, 0 < α ≤ 1 and Wiman’s function Eα,β(−w) for w ≥ 0,
0 < α ≤ 1 and β ≥ α are CM, respectively. These observations have motivated
us to investigate the CM behavior of Eγα,β(−w) clarifying the meaning of both
conditions, 0 < αγ ≤ β ≤ 1 and 0 < β ≤ 1, obtained in [1, 17, 38] as ensuring CM
of E γ

α,β(t;x). Ergo, our task is to prove the CM property of Eγα,β(−w) for w ≥ 0 and
to precise the most general range of constrains which are to be put on parameters
α, β and γ.

The paper is organized as follows. In section 2 we present our main result,
Theorem 2.1, which comprises, using the Bernstein theorem, the proof of the CM
character of the three parameter Mittag–Leffler function Eγα,β(−w). Giving, in

section 3, explicit representation of Eγα,β(−w) for rational α ∈ (0, 1] in terms of the
Laplace transform of generalized hypergeometric function enables us to show the
same result in an alternative way. The section 4 closes the paper with concluding
comments.
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2. THE MAIN RESULT

This section addresses the problem of the conditions to be imposed in order to
establish the CM of the three parameter Mittag-Leffler function. Our proof that the
three parameter Mittag-Leffler function is CM for defined range of the parameters
α, β, γ is inspired by and generalizes H. Pollard’s paper [25]. To achieve the result
we use the Bernstein theorem and besides of proving the CM derive the constraints
which the parameters have to obey.

Theorem 1. The three parameter generalized Mittag-Leffler function Eγα,β(−w) is
completely monotone (CM) for 0 < α ≤ 1, γ > 0, and β ≥ αγ.

Proof. First we will show that Eγα,β(−w), for w > 0 and α, β, γ > 0, can be

expressed as the Laplace transform of σ : u 7→ u−1− 1
α gγα,β(u−1/α); u > 0, where

(1) gγα,β(y) =
α

Γ(γ)

y−β

2π i

∫
L

eyz zαγ−β e−z
α

dz

with L being the Bromwich contour with <(z) > 0. To begin with we consider
Prabhakar’s result [26, Eq. (2.5)]

L [E γ
α,β(t;x)](s) =

sαγ−β

(x+ sα)γ
, <(s),<(β) > 0; |s| > |x|1/<(α).

Its inverse gives the Mittag-Leffler function

Eγα,β(−xtα) =
t1−β

2πi

∫
Ls

est
sαγ−β

(sα + x)γ
ds ,

where Ls is the Bromwich contour with <(s) > 0. Changing mutatis mutandis the
variable st = ξ1/α and making use of the familiar Gamma-function formula

(2) (ξ + xtα)−γ =
1

Γ(γ)

∫ ∞
0

e−(ξ+xtα)u uγ−1 du ,

we arrive at

(3) Eγα,β(−xtα) =
1

2πiα

∫
Lξ

eξ
1/α

ξ
αγ−β+1

α −1

[
1

Γ(γ)

∫ ∞
0

e−(ξ+xtα)u uγ−1 du

]
dξ.

These steps are legitimate as by the substitution ξ = (st)α the integration contour
Ls transforms into Lξ and obviously <(ξ) = |s|αtα cos

(
α arg(s)

)
> 0. In this

way the convergence of integral (2) is controlled. Both integrals in (3) converge
absolutely so we are allowed to change the order of integration. This gives

Eγα,β(−xtα) =
1

2πiαΓ(γ)

∫ ∞
0

e−xt
αu uγ−1

[∫
Lξ

eξ
1/α−uξ ξ

αγ−β+1
α −1 dξ

]
du.
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In the second integral we change the integration variable ξ → u−1zα. Next intro-
duce the function gγα,β(y) defined in (1) and rewrite the formula above as

(4) Eγα,β(−xtα) =
1

α

∫ ∞
0

e−xt
αu u−1−1/α gγα,β(u−1/α) du.

Setting xtα = w completes the claim we have begun with.

According to (4) Eγα,β(−w) is given as the Laplace transform and, due to the
Bernstein theorem, represents a CM function iff the integrand in RHS of (4) is
non-negative on R+. Thus, if we write down (1) as

(5) gγα,β(y) =
α

Γ(γ) yβ
fγα,β(y),

it is enough to show the non-negativity of the function fγα,β(y) for y > 0. The
latter, as seen from (1), is defined as the inverse Laplace transform so

(6)

∫ ∞
0

e−yz fγα,β(y) dy = zαγ−β e−z
α

.

Reminding again the Bernstein theorem we see that if the RHS of (6) is CM then
fγα,β(y) must be non-negative on R+. Recall that the product of CM functions also

obeys this property. Due to Pollard’s result [24] the stretched exponential e−z
α

is CM for 0 < α ≤ 1, whereas zαγ−β is obviously CM if β ≥ αγ, where is γ > 0
which we assume throughout. Hence, for this parameter range fγα,β(y) ≥ 0 on R+,

so does a fortiori σ : u 7→ u−1−1/αgγα,β(u−
1
α ); u > 0 for gγα,β(y) introduced in (5).

Resumming: by (4) with xtα = w > 0, (1) and fγα,β(y) ≥ 0 for y > 0 we

deduce that Eγα,β(−w) is the Laplace transform of a non-negative function and thus
is CM which statement completes the proof.

Remark 2. Eγα,β(−w) is CM for the parameter range 0 < α ≤ 1, γ > 0, and
β ≥ αγ. We point out that the restriction β ≤ 1 appearing in [1, 17, 38] is
needed if one wants to explain the CM of the Prabhakar kernel E γ

α,β(t; 1) as a

result of CM substitution w → tα in Eγα,β(−w) and next multiplying it by tβ−1

being CM for 0 < β < 1. Thus the CM property of E γ
α,β(t; 1) arises from two

facts: (i) composition f ◦ g(x) of CM functions f, g leads to the CM of the result;
(ii) the product of CM functions gives CM result as well. We emphasize that for
just mentioned construction the CM of Eγα,β(−w) is necessary as it enables us to
realize the step (i). In our approach the condition β ≤ 1 is not needed because it
plays no role for CM of Eγα,β(−w) itself. The condition β ≥ αγ which appears in
our proof fully coincides with those known as leading to the CM of the standard
Mittag-Leffler function Eα(−w) = E1

α,1(−w), 0 < α ≤ 1 [25], and of the Wiman
generalization of the Mittag-Leffler function Eα,β(−w) = E1

α,β(−w) proved to be
CM for 0 < α ≤ 1, β ≥ α, [34]. This shows that Theorem 2.1 provides us with the
result being more general than consequences emerging from the CM property of the
Prabhakar kernel E γ

α,β(t; 1).
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3. THE FUNCTION F γ
α,β - WHAT WE DO KNOW ABOUT IT?

Involving apparatus of the generalized hypergeometric functions we shall es-
tablish explicit formula for the function fγα,β . Assuming that the parameter α is a

rational taken from the interval (0, 1] we will show that fγα,β may be expressed in
terms of the Meijer G function which in the case under consideration boils down to
the Wright Ψ function. To infer this result we employ the Laplace and the Mellin
transform techniques in conjunction with appropriate transformation properties of
the Meijer G function. We note that the restriction for α to be rational is justified
two-fold: (iii) giving it up we are forced to apply much more complicated formal-
ism of the Fox H–function (consult [13] for further details) which is redundant for
physical applications as the latter always use rational values of parameters and (iv)
the Meijer G and the generalized hypergeometric pFq functions are built into com-
puter algebra systems which makes to work with them much easier and effective,
both in symbolic and numerical calculations.

To proceed further recall that:

1. The Meijer G function is defined through the Mellin-Barnes integral [2, 18,
27]

Gm,np,q

(
z

∣∣∣∣∣ (αp)(βq)

)
=

1

2πi

∫
G

m∏
j=1

Γ(βj + s)
n∏
j=1

Γ(1− αj − s)

q∏
j=m+1

Γ(1− βj − s)
p∏

j=n+1

Γ(αj + s)

z−s ds,

valid for any z 6= 0 and where empty products are taken to be equal 1. Also,
0 ≤ m ≤ q; 0 ≤ n ≤ p while for a list of complex parameters the shorthand
(at) = a1, a2, . . . , at is used. The integration contour G separates the poles
of Γ(βj + s) from those of Γ(1− αj − s), for details consult [27].

2. The series representation of the generalized hypergeometric function reads as

pFq

(
a1, . . . , ap
b1, . . . , bq

;x

)
=
∑
r≥0

(a1)r . . . (ap)r
(b1)r . . . (bq)r

xr

r!
.

For the convergence conditions see [27].

3. The Mellin transform of f(y) denoted as f̂(s), s ∈ C (or symbolically by
M [·](s)) is, together with its inverse, defined as

f̂(s) = M [f(y)](s) =

∫ ∞
0

ys−1f(y) dy, f(y) =
1

2πi

∫
Ms

y−sf̂(s) ds,

where Ms denotes the Bromwich contour with <(s) > 0.
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In what follows we will use tools of the Mellin transform technique. By [15,
Theorem 1] (see also [39, Theorem 9a] regarding that issue) M [f(y)](s) absolutely
converges on the vertical strip a < <(s) < b with a < 1 iff

(7) M [f(y)](s) =
1

Γ(1− s)
M
[
L [f(y)](z)

]
(1− s), <(z) > 0.

Due to (6), the Laplace transform L [fγα,β(y)](z) equals zαγ−β e−z
α

which in con-
junction with (7) leads to

f̂ γα,β(s) =
1

αΓ(1− s)
Γ

(
γ +

1− β − s
α

)
.

For rational α = l/k ∈ (0, 1] we invert this Mellin transform. Introducing the
variable σ = γ/k + (1− β − s)/l we get

fγl/k,β(y) =
1

2πi

k

y1+ l
k γ−β

∫
Mσ

Γ(kσ) ylσ

Γ(lσ + β − l
kγ)

dσ

=

√
lk

(2π)
k−l
2

l
l
k γ−β

y1+ l
k γ−β

1

2πi

∫
Mσ

k−1∏
j=0

Γ( jk + σ)

l−1∏
j=0

Γ( j+β−lγ/kl + σ)

(
ll

kkyl

)−σ
dσ(8)

=

√
lk

(2π)
k−l
2

l
l
k γ−β

y1+ l
k γ−β

Gk,0l,k

(
ll

kkyl

∣∣∣∣∣∆(l, β − l
kγ)

∆(k, 0)

)

where ∆(n, a) stands for the list a/n, (a + 1)/n, . . . , (a + n − 1)/n. To get the
second line the Gauss multiplication formula for the Gamma function, viz. Γ(nz) =

(2π)(1−n)/2 nnz−1/2
∏n−1
j=0 Γ(z+j/n), (n positive integer), was used, while the third

line came from the definition in the item 1 above as its special case Gk,0l,k
(
y
∣∣ (ap)

(bq)

)
.

Making use of [28, Eq. (2.2.1.19)] for ν = β − lγ/k and a = 1 we calculate
the Laplace transform of the RHS of (8)

(9)
√
lk(l

l
k γ−β)

(2π)
k−l
2

∞∫
0

e−zyy−(1+ l
k γ−β)Gk,0l,k

(
ll

kkyl

∣∣∣∣∣∆(l, β − l
kγ)

∆(k, 0)

)
dy = z

l
k γ−βe−z

l/k

.

As shown in section 2 the RHS above is CM for β ≥ lγ/k which implies that

Gk,0l,k

(
ll

kkyl

∣∣∣∣∣∆(l,β− l
k γ)

∆(k,0)

)
is non-negative for this range of parameters. Thus we are

ready to formulate the corollary

Corollary 3. Let α = l/k, l ≤ k positive integers, β, γ > 0, gγl/k,β(y) is defined by

(5) and w > 0. Then the three parameter Mittag-Leffler function Eγl/k,β(−w)
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a) is given by the Laplace transform of a function non-negative on R+

l

k
Eγl/k,β(−w) = L

[
u−1−k/lgγl/k,β

(
u−k/l

)]
(w),

b) is CM for β ≥ lγ/k.

Proof. Specifying α = l/k in Eqs. (5) and (9) we have

hl,k(u) :=
k

l
u−1− kl gγl

k ,β
(u−

k
l ) =

l
l
k γ−β

(2π)
k−l
2

√
lk

Γ(γ)
uγ−1Gk,0l,k

(
lluk

kk

∣∣∣∆(l, β − l
kγ)

∆(k, 0)

)
.

According to [27, Eq. (2.24.3.1)] and by the argument inversion property of the
Meijer G function [27, Eq. (8.2.2.14)], its Laplace transform reduces to

(10) L [hl,k(u)](w) =
kγ l

l
k γ+ 1

2−βw−γ

Γ(γ)(2π)k−
1+l
2

Gk,kk,l+k

(
wk

ll

∣∣∣ ∆(k, 1)

∆(k, γ),∆(l, 1 + l
kγ − β)

)
.

The Meijer G function may be expressed in terms of the finite sum of generalized
hypergeometric functions [27, Eq.(8.2.2.3)]

Gm,np,q

(
z

∣∣∣∣∣ (αp)(βq)

)
=

m∑
k=1

[ m∏
j=1

Γ(βj − βk)
]? n∏

j=1

Γ(1 + βk − αj)

p∏
j=n+1

Γ(αj − βk)
q∏

j=m+1

Γ(1 + βk − βj)
zβk

× pFq−1

(
1 + βk − (αp)

1 + βk − (βq)
′ ; (−1)p−m−nz

)
,

where the shorthands
[∏m

j=1 Γ(βj − βk)
]?

:=
∏k−1
j=1 Γ(βj − βk)

∏m
j=k+1 Γ(βj − βk)

and ck− (cq)
′ := ck− c1, . . . , ck− ck−1, ck− ck+1, . . . , ck− cq are used. This relation

and the Gauss multiplication formula, if adopted to RHS of (10), lead to

L [hl,k(u)](w) =

k−1∑
j=0

(γ)j(−w)j

j!Γ(β + l
k j)

1+kFl+k

(
1,∆(k, γ + j)

∆(k, 1 + j),∆(l, β + l
k j)

;
(−w)k

ll

)
.

Using the series expansion of the generalized hypergeometric functions, (7), and

the splitted summation formula for double sums
∑m−1
j=0

∑
r≥0 amr+j =

∑
r≥0 ar, we

arrive at L [hl,k(u)](w) = Eγl/k,β(−w). Applying previously shown non-negativity

of hl,k(u) and the Bernstein theorem ends the proof.

Remark 4. The function fγα,β is closely related to the confluent Wright function
[2, 41, 42]

0Ψ1

(
−; (β, α); z) =

∑
r≥0

zr

r! Γ(αr + β)
, z ∈ C.
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Using the lines of proof following the procedure exposed in the proof of Corollary
3.3. it may be shown (we leave it to the interested reader) that if l ≤ k are positive
integers then for all y > 0 we get

fγl/k,β(y) = yβ−
l
k γ−1

0Ψ1

(
−;
(
β − l

kγ,−
l
k

)
;−y− l

k

)
.

Here we would like to recall that the confluent Wright function was in detail dis-
cussed by Bogoljub Stanković [37] who, in particular, showed the non-negativity of

0Ψ1

(
−;
(
β − l

kγ,−
l
k

)
;−y− l

k

)
on R+ and β − l

kγ ≥ 0. The authors are thankful

to his mastery in exposing this topic by a complex analytical approach in a highly
elegant way.

4. CONCLUDING REMARKS

Our proof of the CM property of Eγα,β(−w) is rooted in H. Pollard’s elegant
and hitting home considerations. The latter, although devoted solely to the one pa-
rameter Mittag-Leffler function Eα(−w), admit natural generalization to the other
functions belonging to the Mittag-Leffler family. Here we would like to emphasize
the paramount importance of the Eγα,β(−w) and its properties in ongoing studies

of affined functions which frequently reduce to the Eγα,β(−w) modified by some
prefactors and/or parameter-dependent substitutions. Complete monotonicity of
the three parameter Mittag-Leffler function and its relatives plays a pivoting role
in understanding the time behavior of physical processes whose evolution is gov-
erned by equations involving fractional derivatives [14]. As shown in studies of
equations proposed to describe either non-Debye relaxations or anomalous diffu-
sion physically acceptable solutions to these equations have to satisfy requirements
closely related, or even encoded in complete monotonicity [4, 8, 9] which makes
methods developed in the theory of CM functions more and more important tool
of mathematical physics.
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11. A. Hanyga, M. Seredyńska: Mittag-Leffler functions and complete monotonicity.
J. Stat. Phys., 131 (2008), 269–303.

12. S. J. Havriliak, S. Negami: A complex plane representation of dielectric and
mechanical relaxation processes in some polymers. Polymer, 8 (1967), 161–210.

13. A. A. Kilbas, M. Saigo: H–Transforms: Theory and Application. Analytical Meth-
ods and Special Functions, 9. Chapman & Hall/CRC, Boca Raton, FL, 2004.

14. A. N. Kochubei: General fractional calculus, evolution equations and renewal pro-
cesses. Integral Equat. Oper. Theory, 71 (2011), 583–600.

15. J. S. Lew: On some relations between the Laplace and Mellin transforms. IBM J.
Res. Develop., 19(6) (1975), 582–586.

16. F. Mainardi: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduc-
tion to Mathematical Models. Imperial College Press, London, 2010.

17. F. Mainardi, R. Garrappa: On complete monotonicity of the Prabhakar function
and non-Debye relaxation in dielectrics. J. Comp. Phys., 293 (2015), 70–80.



On CM of Three Parameter Mittag-Leffler Function 127

18. O. I. Marichev: Handbook of Integral Transforms of Higher Transcendental
Functions: Theory and Algorithmic Tables. Mathematics and its Applications, Ellis
Horwood Ltd., 1982, Ch. 4.
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