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MAXIMAL MATCHINGS IN POLYSPIRO AND

BENZENOID CHAINS

Tomislav Došlić and Taylor Short

A matching M of a graph G is maximal if it is not a proper subset of any

other matching in G. Maximal matchings are much less known and researched

than their maximum and perfect counterparts. In this paper we present the

recurrences and generating functions for the sequences enumerating maximal

matchings in two classes of chemically interesting linear polymers: polyspiro

chains and benzenoid chains. We also analyze the asymptotic behavior of

those sequences and determine the extremal cases.

1. INTRODUCTION

A matching in a graph is a collection of its edges such that no two edges in this
collection have a vertex in common. Matchings in graphs serve as successful models
of many phenomena in engineering, natural and social sciences. A strong initial
impetus to their study came from the chemistry of benzenoid compounds after it
was observed that the stability of benzenoid compounds is related to the existence
and the number of perfect matchings in the corresponding graphs. That observation
gave rise to a number of enumerative results that were accumulated over the course
of several decades; we refer the reader to monograph [3] for a survey. Further
motivation came from the statistical mechanics via the Kasteleyn’s solution of the
dimer problem [15, 16] and its applications to evaluations of partition functions
for a given value of temperature. In both cases, the matchings under consideration
are perfect, i.e., their edges are collectively incident to all vertices of G. It is clear
that perfect matchings are as large as possible and that no other matching in G
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can be “larger” than a perfect one. It turns out that in all other applications we
are also interested mostly in large matchings.

Basically, there are two ways to quantify the largeness of a matching. One
way, by using the number of edges, gives rise to the idea of maximum match-
ings. Maximum matchings are well researched and well understood; there is a well
developed structural theory and enumerative results are abundant. The classical
monograph by Lóvasz and Plummer [18] is an excellent reference for all aspects of
the theory.

An alternative way is to say that a matching is large if no other matching
contains it as a proper subset; this gives rise to the concept of maximal matchings.
Every maximum matching is also maximal, but the opposite is usually not true.
Unlike their maximum counterparts, maximal matchings can have different cardi-
nalities (unless the graph is equimatchable; see [10]) and the recurrences used for
their enumeration are essentially non-local. As a consequence, maximal matchings
are much less understood then the maximum ones. There is nothing analogous
to the structural theory of maximum matchings and the enumerative results are
scarce and scattered through the literature [7, 12, 17, 23].

Maximal matchings can be also thought of as independent edge dominating
sets, i.e., the sets of edges that are collectively incident to all edges of a given graph.
See [11] for a survey of independent domination in graphs and [19] for perfect and
efficient edge domination.

In spite of their obscurity, maximal matchings are natural models for sev-
eral problems connected with adsorption of dimers on a structured substrate and
block-allocation of a sequential resource. One can find them also in the context of
polymerization of organic molecules, as witnessed by an early paper of Flory [9].
A probabilistic approach to the same problem can be found in [13]. We refer the
reader to papers [1, 4, 6, 7] for some structural and enumerative results on those
models.

In this paper our goal is to further the line of research of reference [7] by con-
sidering graphs with more complicated connectivity patterns and richer structure
of basic units. We provide enumerative and extremal results on maximal match-
ings in two classes of linear polymers of chemical interest: the polyspiro chains and
benzenoid chains. We establish the recurrences and generating functions for the
enumerating sequences of maximal matchings in three classes of uniform polyspiro
chains and use the obtained results to determine the asymptotic behavior and to
find the extremal chains. Further, we also enumerate maximal matchings in three
classes of benzenoid chains and show that one of them is extremal with respect to
the number of maximal matchings. Our results show that maximal matchings be-
have in a radically different way that the perfect matchings; chains rich in maximal
matchings are poor in perfect matchings and vice versa. We end by comparing our
results with enumerative results for other types of structures in similar polymers
and by discussing some possible directions of future research.
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2. PRELIMINARIES

Our terminology and notations are mostly standard and taken from [18, 24].
All graphs G considered in this paper will be finite and simple, with vertex set
V (G) and edge set E(G). For a subset of vertices S of V (G), we make use of the
notation G − S (or G − v if S = {v}) to denote the subgraph of G obtained by
deleting the vertices of S and all edges incident to them. For a graph G and subset
of edges X of G, we use the notation G \ X (or G \ e if X = {e}) to denote the
subgraph of G obtained by deleting the endpoints of the edges in X as well as all
incident edges to these endpoints.

A matching M in G is a set of edges of G such that no two edges from M
have a vertex in common. The number of edges in M is called its size. A matching
in G with the largest possible size is called a maximum matching. If a matching in
G is not a subset of a larger matching of G, it is called a maximal matching. Let
Ψ(G) denote the number of maximal matchings of G.

In this paper we are mainly concerned with counting maximal matchings
in two classes of linear polymers (or fasciagraphs, [14]) with simple connectivity
patterns. The first class are 6-uniform cactus chains. Chain cacti are in chemical
literature known as polyspiro chains.

A cactus graph is a connected graph in which no edge lies in more than one
cycle. Consequently, each block of a cactus graph is either an edge or a cycle. If
all blocks of a cactus G are cycles of the same length m, the cactus is m-uniform.

A hexagonal cactus is a 6-uniform cactus, i.e., a cactus in which every block
is a hexagon. A vertex shared by two or more hexagons is called a cut-vertex.
If each hexagon of a hexagonal cactus G has at most two cut-vertices, and each
cut-vertex is shared by exactly two hexagons, we say that G is a chain hexagonal
cactus. The number of hexagons is called the length of the chain. An example of a
chain hexagonal cactus is shown in Figure 1.

Figure 1: A chain hexagonal cactus of length 6.

Furthermore, any chain hexagonal cactus of length greater than one has ex-
actly two hexagons with only one cut-vertex; such hexagons are called terminal
and all other hexagons with two cut-vertices are called internal.

Internal hexagons can be one of three types depending upon the distance
between its cut-vertices: in an ortho-hexagon cut vertices are adjacent, in a meta-
hexagon they are at distance two, and in a para-hexagon cut-vertices are at distance
three. The terminology is borrowed from the theory of benzenoid hydrocarbons; see
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[5, 6, 7] for more details. These give rise to the following three types of hexagonal
cactus chains of length n: the unique chain whose internal hexagons are all para-
hexagons is Pn, the unique chain whose internal hexagons are all meta-hexagons is
Mn, and the unique chain whose internal hexagons are all ortho-hexagons is On.
The hexagonal cactus chains Pn, Mn, and On are depicted in Figure 2.

Pn 1 2 · · · n

Mn 1

2

· · · n

On 1

2

· · · n

Figure 2: The hexagonal cactus chains Pn, Mn, and On.

The other class of unbranched polymers we consider are benzenoid chains.
A benzenoid system is a connected, plane graph without cut-vertices in which all
faces, except the unbounded one, are hexagons. Two hexagonal faces are either
disjoint or they share exactly one common edge (adjacent hexagons). A vertex of
a benzenoid system belongs to at most three hexagonal faces and the benzenoid
system is called catacondensed if it does not posses such a vertex. If no hexagon
in a catacondensed benzenoid is adjacent to three other hexagons, we say that the
benzenoid is a chain see Figure 3.

Figure 3: A benzenoid chain of length 6.

The number of hexagons in a benzenoid chain is called its length. In each
benzenoid chain there are exactly two hexagons adjacent to one other hexagon;
those two hexagons are called terminal, while any other hexagons are called interior.
An interior hexagon has two vertices of degree 2. If these two vertices are not
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adjacent, then the hexagon is called straight. If the two vertices are adjacent, then
the hexagon is called kinky.

If all n−2 interior hexagons of a benzenoid chain with n hexagons are straight,
we call the chain a polyacene and denote it by Ln, see Figure 4. If all interior
hexagons are kinky, the chain is called a polyphenacene. Since the number of perfect
matchings in a polyphenacene of length n is equal to the (n + 2)-nd Fibonacci
number Fn+2, these chains are also known as fibonacenes [3]. We consider two
specific families of polyphenacenes depicted in Figure 4: the zig-zag polyphenacene,
Zn, and helicene, Hn.

Ln 1 2 · · · n

Zn 1
2

· · · n

Hn 1 2

...

n

Figure 4: The polyacene, zig-zag polyphenacene, and helicene chains.

3. CHAIN HEXAGONAL CACTI

3.1 Generating functions

In this section, we obtain ordinary generating functions for the number of maxi-
mal matchings in the hexagonal chain cacti Pn, Mn, and On. To do this, we first
find recursions for the number of maximal matchings using auxiliary graphs (initial
conditions are obtained by direct counting). These recursions can be verified via
casework. By introducing generating functions for the number of maximal match-
ings in each auxiliary graph, the recursions can be transformed into a solvable
system of equations in terms of unknown generating functions. Finally, we solve
this system of equations for the desired generating function. We omit the details
of most of these computations.

Lemma 3.1. Let pn be the number of maximal matchings in Pn and pin be the
number of maximal matchings in the auxiliary graph P in in Figure 5. Then
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(i) pn = 2p1
n−1 + pn−1,

(ii) p1
n = p2

n + p3
n−1,

(iii) p2
n = p3

n−1 + 2p1
n−1,

(iv) p3
n = pn + 2p3

n−1,

with the initial conditions p0 = 1, p1
0 = 2, p2

0 = 1, and p3
0 = 3.

Pn 1 2 · · · n P 1
n 1 2 · · · n

P 2
n 1 2 · · · n P 3

n 1 2 · · · n

Figure 5: Auxiliary graphs for Pn.

Proof. We prove the recursion for (i) and the rest follow similarly. We refer the
reader to the thesis [21] for the details of the remaining proofs in this paper.

Consider the chain Pn as in Figure 6. Any maximal matching of Pn must
contain exactly one of the following sets of edges: {a}, {b}, or {c, d}. Now for any
maximal matching containing the edge a, the remaining edges must be a maximal
matching of the subgraph P 1

n−1. The same holds for any maximal matching con-
taining b. Hence the number of maximal matchings containing the edges a or b
is 2p1

n−1. Now for any maximal matching containing the pair of edges c and d,
the remaining edges must be a maximal matching of the subgraph Pn−1. Hence
the number of maximal matchings containing both the edges c and d is pn−1. The
recursion (i) now follows.

a

b

c

d

1 2 · · · n

Figure 6: Pn with labeled edges a, b, c, and d.

Lemma 3.2. Let mn be the number of maximal matchings in Mn and mi
n be the
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number of maximal matchings in the auxiliary graph M i
n in Figure 7. Then

(i) mn = 2m1
n−1 +mn−1,

(ii) m1
n = m2

n +m3
n−1,

(iii) m2
n = m3

n−1 +m1
n−1 +m2

n−1 +mn−1,

(iv) m3
n = 2m3

n−1 +m1
n−1 +m2

n−1 +mn−1 +m2
n,

with the initial conditions m0 = 1, m1
0 = 2, m2

0 = 1, and m3
0 = 3.

Mn 1
2
· · · n M1

n 1
2
· · · n

M2
n 1

2
· · · n M3

n 1
2
· · · n

Figure 7: Auxiliary graphs for Mn.

On 1

2

· · · n O1
n 1

2

· · · n

O2
n 1

2

· · · n O3
n 1

2

· · · n

Figure 8: Auxiliary graphs for On.

Lemma 3.3. Let on be the number of maximal matchings in On and oin be the
number of maximal matchings in the auxiliary graph Oin in Figure 8. Then

(i) on = 2o1
n−1 + on−1,

(ii) o1
n = o2

n + o3
n−1,
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(iii) o2
n = o3

n−1 + o2
n−1 + on−1 + 2o3

n−2,

(iv) o3
n = on + o3

n−1 + o2
n,

with the initial conditions o0 = 1, o1
0 = 2, o2

0 = 1, o2
1 = 7, and o3

0 = 3.

Theorem 3.4. Let P (x), M(x), and O(x) be the ordinary generating functions for
the sequences pn, mn, and on, respectively. Then

(i)

P (x) =
1 + 4x2

1− 5x+ 4x2 − 4x3
,

(ii)

M(x) =
1− x− 2x2

1− 6x+ 3x2 − 2x3
,

(iii)

O(x) =
1 + x+ x2

1− 4x− 4x2 − x3
.

Since P (x), M(x), and O(x) are rational functions, we can conclude that the num-
bers pn, mn, and on each satisfy a third order linear recurrence with constant
coefficients. The initial conditions can be verified by direct computations.

Corollary 3.5.

(i) pn = 5pn−1 − 4pn−2 + 4pn−3

with initial conditions p0 = 1, p1 = 5, p2 = 25,

(ii) mn = 6mn−1 − 3mn−2 + 2mn−3

with initial conditions m0 = 1, m1 = 5, m2 = 25,

(iii) on = 4on−1 + 4on−2 + on−3

with initial conditions o0 = 1, o1 = 5, o2 = 25.

None of the obtained sequences appear in The On-Line Encyclopedia of Integer
Sequences [20].

Now we can apply a version of Darboux’s theorem to deduce the asymptotic
behavior of the sequences pn, mn, and on. We refer the reader to any of stan-
dard books on generating functions, such as [2, 25] for more information on these
techniques.
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Theorem 3.6 (Darboux). Let f(x) =
∑∞
n=0 anx

n denote the ordinary generating
function of a sequence an. If f(x) can be written as

f(x) =
(

1− x

w

)α
g(x),

where w is the smallest modulus singularity of f and g is analytic at w, then

an ∼
g(w)

Γ(−α)
w−nn−α−1.

Here Γ(x) denotes the gamma function.

Corollary 3.7.

(i) pn ∼ 1.37804 · 4.28428n,

(ii) mn ∼ 0.81408 · 5.52233n,

(iii) on ∼ 1.05177 · 4.86454n.

The characteristic equations of the three recurrences can be solved exactly,
but the resulting formulas tend to be too cumbersome to be of any use. The
equation for meta-chains, however, allows a compact formula for the smallest (and
the only) positive root: it is equal to 1

2 (1 + 3
√

3− 3
√

9).

The obtained asymptotics suggest that meta-chains could be the richest and
para-chains the poorest in maximal matchings among all polyspiro chains of the
same length. In the next subsection we prove that this is, indeed, the case.

3.2 Extremal structures

Theorem 3.8. Let Gn be a hexagonal cactus of length n. Then

Ψ(Pn) ≤ Ψ(Gn) ≤ Ψ(Mn).

Let Gm be an arbitrary hexagonal cactus of length m. Observe that we can
always draw Gm as in Figure 9, where hm is a terminal hexagon and the hexagon
adjacent to the left of hm−1 may attach at any of the vertices b, a, k, j, or i. Let us
assume the hexagons of Gm are labeled h1, . . . , hm according to their ordering in
Figure 9 where (h1 is the other terminal hexagon).

In what follows, for 1 ≤ `, p ≤ m let H` be the subgraph of Gm induced by
the vertices of the hexagons h1, . . . , h` and let H`,p denote the subgraph of Gm
induced by the vertices of the two hexagons h` and hp. We will need the following
lemmas.
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hm−1 hm· · ·

a b

c

d e

f

j i h g

k

Figure 9: A terminal hexagon, hm, and its adjacent hexagon, hm−1, in the hexag-
onal chain cactus Gm.

Lemma 3.9. If H is a subgraph of the graph G, then Ψ(H) ≤ Ψ(G).

The proof of Lemma 3.9 is immediate since any maximal matching of the subgraph
H can be extended to a maximal matching in G.

Lemma 3.10. Any maximal matching in Gm must contain exactly one of the edges
cb, cd, ch, or ci, or the maximal matching must contain all the edges ab, de, ji, and
hg.

Proof. Take a maximal matching M in Gm. For sake of contradiction, suppose
that M does not contain any of the edges cb, cd, ch, or ci and that M does not
contain all of the edges ab, de, ji, and hg. Then at least one of the edges ab, de,
ji, and hg is missing, say ab. Since ab is not in M , then we can add the edge bc to
M , which is a contradiction to the fact that M is a maximal matching. The lemma
follows.

Lemma 3.11. For the subgraph Hm−1 of Gm, at least one of the following holds:

(i) 2 ·Ψ(Hm−1 − {b, c}) ≥ Ψ(Hm−1 − c)
(ii) 2 ·Ψ(Hm−1 − {c, i}) ≥ Ψ(Hm−1 − c)

Proof. The proof depends on where the hexagon hm−2 attaches to hm−1. By sym-
metry, suppose that hm−2 attaches at either i, j, or k (the case a, b, k is similar).
Consider a maximal matching of Hm−1 − c. If such a matching contains the edge
ab, then the remaining edges give a maximal matching of Hm−1 − {a, b, c}. If a
maximal matching does not contain the edge ab, then the matching must also be
maximal in the graph Hm−1 − {b, c}. Thus by Lemma 3.9 we have

Ψ(Hm−1 − {c}) = Ψ(Hm−1 − {a, b, c}) + Ψ(Hm−1 − {b, c})
≤ 2 ·Ψ(Hm−1 − {b, c}).

Proof (of Theorem 3.8). Take a hexagonal cactus C of length n − 1. Let us set
m = n − 1 and suppose that C is drawn as in Figure 9 with vertices labeled as
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such, so that we may refer to this picture to aid this proof. We consider three cases
of extending C by an nth hexagon hn.

Case 1. The hexagon hn attaches in the para position to the vertex f
and let us denote the resulting graph by CP , see Figure 10. To compute Ψ(CP )
we make use of Lemma 3.10. Consider maximal matchings in CP containing the
edge bc. The remaining edges of the matching must be a maximal matching of
Hn−2 − {b, c} and a maximal matching of Hn−1,n − c. By direct counting, we find
that Ψ(Hn−1,n − c) = 11 and hence, the number of maximal matchings containing
the edge bc is 11 · Ψ(Hn−2 − {b, c}). We count the maximal matchings containing
the edges ci, cd, or ch as well as the maximal matchings containing all the edges
ab, de, ji, and hg similarly, to obtain

Ψ(CP ) =11(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 20 ·Ψ(Hn−2 − c)
+ 5 ·Ψ(Hn−2 − {a, b, c, i, j}).

hn−2 hn−1 hn· · ·

a b

c

d e

f

j i h g

k

Figure 10: The hexagonal cactus CP.

hn−2 hn−1

hn

· · ·

a b

c

d e

f

j i h g

k

Figure 11: The hexagonal cactus CM.

Case 2. The hexagon hn attaches in the meta position to the vertex e and
let us denote the resulting graph by CM , see Figure 11. Counting similarly to Case
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1 above we obtain

Ψ(CM) =17(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 22 ·Ψ(Hn−2 − c)
+ 3 ·Ψ(Hn−2 − {a, b, c, i, j}).

Case 3. The hexagon hn attaches in the ortho position to the vertex d and
let us denote the resulting graph by CO, see Figure 12. Counting as in Cases 1
and 2,

Ψ(CO) =15(Ψ(Hn−2 − {b, c}) + Ψ(Hn−2 − {c, i})) + 18 ·Ψ(Hn−2 − c)
+ 3 ·Ψ(Hn−2 − {a, b, c, i, j}).

hn−2 hn−1

hn

· · ·

a b

c

d e

f

j i h g

k

Figure 12: The hexagonal cactus CO.

Now Ψ(CM) ≥ Ψ(CO) follows immediately by comparing terms. By Lemma
3.9, we have Ψ(Hn−2−c) ≥ Ψ(Hn−2−{a, b, c, i, j}) and by comparing the remaining
terms we see that Ψ(CM) ≥ Ψ(CP ). The preceding shows that attaching a hexagon
in the meta position yields the most maximal matchings, implying

Ψ(Gn) ≤ Ψ(Mn)

as desired.

To get the remaining inequality of our theorem, we need only to show that
Ψ(CO) ≥ Ψ(CP ). Now we must have either (i) or (ii) of Lemma 3.11, say (i)
holds. Then 4 · Ψ(Hn−2 − {b, c}) ≥ 2 · Ψ(Hn−2 − c) and by Lemma 3.9 we have
Ψ(Hn−2 − {c, i}) ≥ Ψ(Hn−2 − {a, b, c, i, j}), showing that

Ψ(CO) ≥ 11Ψ(Hn−2 − {b, c}) + 13Ψ(Hn−2 − {c, i}) + 20 ·Ψ(Hn−2 − c)
+ 5 ·Ψ(Hn−2 − {a, b, c, i, j}).(1)

Now by comparing the terms of Ψ(CP ) with the inequality (1), it follows that
Ψ(CO) ≥ Ψ(CP ), which completes the proof.
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It is instructive to compare the above results with the corresponding results
for all matchings and for independent sets from reference [5] (Theorems 3.23 and
4.14, respectively). It can be seen that with respect to the richest chains, the
number of maximal matchings behaves more like the number of independent sets
than the number of all matchings. A possible explanation might be the fact that
maximal matchings in any graph G are in a bijective correspondence with nice
independent sets in G. (A set of vertices S is nice if G−S has a perfect matching.)

4. BENZENOID CHAINS

4.3 Generating functions

Now we turn our attention to benzenoid chains. Here the connectivity increases to
two, and one can expect that this will result in longer recurrences, as indicated in
[7]. This is, indeed, the case.

Using the same techniques outlined in subsection 3.1, we obtain ordinary
generating functions for the number of maximal matchings in the benzenoid chains
Ln, Zn, and Hn.

Ln 1 2 · · · n L1
n 1 2 · · · n

L2
n 1 2 · · · n L3

n 1 2 · · · n

Figure 13: Auxiliary graphs for Ln.

Lemma 4.12. Let `n be the number of maximal matchings in Ln and `in be the
number of maximal matchings in the auxiliary graph Lin in Figure 13. Then

(i) `n = `1n−1 + `n−1 + 2`2n−2,

(ii) `1n = 2`1n−1 + `n−1 + 2`3n−1,

(iii) `2n = `3n + `1n−1 + `3n−1,

(iv) `3n = `1n−1 + `n−1 + `3n−1 + `2n−2 + `1n−2 + `3n−2,

with the initial conditions `0 = 1, `1 = 5, `10 = 2, `20 = 3, `30 = 2, and `31 = 7.

Proof. We prove the recursion (i) and the rest follow similarly. Consider the chain
Ln as in Figure 14. Note that any maximal matching of Ln must contain exactly
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one of the following sets of edges: {c}, {b, d}, {a, d}, or {b, e}. Consider some
maximal matching of Ln. If the maximal matching contains the edge c, then the
remaining edges in the matching must be a maximal matching of L1

n−1. Hence
the number of maximal matchings containing the edge c is `1n−1. If the maximal
matching contains the edges b and d, then the remaining edges in the matching must
be a maximal matching of Ln−1. So the number of maximal matchings containing
the edges b and d is `n−1. If the maximal matching contains the edges a and d,
then the remaining edges in the matching must be a maximal matching of L2

n−2.
By symmetry, the same holds if the maximal matching contains the edges b and d.
Thus the number of maximal matchings containing the pair of edges a and d or the
pair b and d is 2`2n−2. The recursion `n = `1n−1 + `n−1 + 2`2n−2 follows.

1 2 · · · n

a

e

b

c

d

Figure 14: The chain Ln

Zn 1
2
· · · n Z1

n 1
2
· · · n

Z2
n 1

2
· · · n Z3

n 1
2
· · · n

Z4
n 1

2
· · · n Z5

n 1
2
· · · n

Figure 15: Auxiliary graphs for Zn.

Lemma 4.13. Let zn be the number of maximal matchings in Zn and zin be the
number of maximal matchings in the auxiliary graph Zin in Figure 15. Then

(i) zn = z1
n−1 + z2

n−1 + z3
n−2,

(ii) z1
n = 2z2

n−1 + z4
n−2 + z5

n−1 + z3
n−2 + z2

n−2,
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(iii) z2
n = zn + z5

n−1 + zn−1,

(iv) z3
n = 2z2

n−1 + z3
n−1 + z1

n−1 + z5
n−1,

(v) z4
n = zn + z5

n−1 + zn−1 + z2
n−1 + z3

n−1,

(vi) z5
n = z5

n−1 + z4
n−2 + z2

n−1 + z3
n−2 + zn−1,

with the initial conditions z0 = 1, z1 = 5, z1
0 = 2, z1

1 = 9, z2
0 = 2, z3

0 = 3, z4
0 = 4,

z5
0 = 2, and z5

1 = 7.

Hn 1 2
...

n

H1
n 1 2

...

n

H2
n 1 2

...

n

H3
n 1 2

...

n

H4
n 1 2

...

n

H5
n 1 2

...

n

Figure 16: Auxiliary graphs for Hn.

Lemma 4.14. Let hn be the number of maximal matchings in Hn and hin be the
number of maximal matchings in the auxiliary graph Hi

n in Figure 16. Then

(i) hn = hn−1 + h1
n−1 + h2

n−2 + h3
n−2,

(ii) h1
n = 2h4

n−1 + h5
n−1 + h3

n−2 + 2h4
n−2 + h5

n−2,

(iii) h2
n = h3

n−1 + 2h4
n−1 + 2h4

n−2 + 2h3
n−2 + h5

n−2,

(iv) h3
n = h5

n + hn,
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(v) h4
n = hn + h2

n−1,

(vi) h5
n = h2

n−1 + h4
n−1 + h1

n−1,

with the initial conditions h0 = 1, h1 = 5, h1
0 = 2, h1

1 = 9, h2
0 = 3, h2

1 = 11, h3
0 = 3,

h4
0 = 2, and h5

0 = 2.

Theorem 4.15. Let L(x), Z(x), and H(x) be the ordinary generating functions
for the sequences `n, zn, and hn, respectively. Then

(i)

L(x) =
1 + x− x3

1− 4x− x4 − x5
,

(ii)

Z(x) =
1 + 2x+ 4x2 + 4x3 + 6x4 + 4x5 + x6

1− 3x− x2 − 6x3 − 7x4 − 7x5 − 5x6 − x7
,

(iii)

H(x) =
1 + 4x+ 8x2 + 8x3 + 7x4 + 4x5 + 2x6

1− x− 7x2 − 12x3 − 6x4 − 7x5 − 4x6 − 2x7
.

Since L(x), Z(x), and H(x) are rational functions, we can examine their denom-
inators to obtain linear recurrences for the sequences `n, zn, and hn. The initial
conditions can be verified by direct computations.

Corollary 4.16.

(i) `n = 4`n−1 + `n−4 + `n−5

with initial conditions `0 = 1, `1 = 5, `2 = 20, `3 = 79, and `4 = 317,

(ii) zn = 3zn−1 + zn−2 + 6zn−3 + 7zn−4 + 7zn−5 + 5zn−6 + zn−7

with initial conditions z0 = 1, z1 = 5, z2 = 20, z3 = 75, z4 = 288, z5 = 1105, and
z6 = 4234,

(iii) hn = hn−1 + 7hn−2 + 12hn−3 + 6hn−4 + 7hn−5 + 4hn−6 + 2hn−7

with initial conditions h0 = 1, h1 = 5, h2 = 20, h3 = 75, h4 = 288, h5 = 1094, and
h6 = 4171.

Again we can use Darboux’s Theorem to deduce the asymptotics of the se-
quences `n, zn, and hn. The smallest modulus singularity of L(x) is approxi-
mately x = 0.248804. Hence, the asymptotic behavior of `n is given by `n ∼
1.21480 · 4.01923n for large n. Similarly, we deduce that zn ∼ 1.33598 · 3.83256n

and hn ∼ 1.36234 · 3.81063n for large n.



Maximal Matchings in Polyspiro and Benzenoid Chains 195

4.4 Extremal structure

In this subsection, we prove the linear polyacene has most maximal matchings
among all benzenoid chains of the same length.

Theorem 4.17. Let Gn be a benzenoid chain of length n. Then

Ψ(Gn) ≤ Ψ(Ln).

Let Gm be an arbitrary benzenoid chain of length m. Observe that we can
always draw Gm as in Figure 17, where hm is a terminal hexagon and the hexagon
adjacent to the left of hm−1 may attach at any of the edges f, g, or h. Let us
assume the hexagons of Gm are labeled h1, . . . , hm according to their ordering in
Figure 17 where (h1 is the other terminal hexagon).

hm−1 hm· · ·

a b

c

def

g

h x

y

z

Figure 17: A terminal hexagon, hm, and its adjacent hexagon, hm−1, in the ben-
zenoid chain Gm.

In what follows, let us adopt all of the same notation introduced in section
3.2. We also make use of Lemma 3.9 introduced previously, since this holds for
arbitrary graphs.

Lemma 4.18. Any maximal matching of Gm must contain at least one of the edges
a, b, c, d or e. Moreover, any maximal matching of Gm contains exactly one of these
edges, or contains exactly one of the following pairs of edges: a and e, a and d, b
and e, or b and d.

Proof. Take a maximal matching M . For sake of contradiction, suppose M contains
none of the edges a, b, c, d or e. Then we could add the edge c to M , which is a
contradiction to M being a maximal matching. Hence at least one of the edges
a, b, c, d or e. The remaining part of the lemma follows by considering which pairs
of edges can belong to the same matching.

Proof. (of theorem 4.17). Take a benzenoid chain B of length n − 1. Let us set
m = n− 1 and suppose that B is drawn as in Figure 17 with edges labeled as such,
so that we may refer to this picture to aid this proof. We consider two cases of
extending B by an nth hexagon hn.
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hn−2 hn−1 hn· · ·

a b

c

def

g

h x

y

z

Figure 18: The benzenoid chain BL.

Case 1. The hexagon hn attaches in the linear position to the edge y and let
us denote the resulting graph by BL, see Figure 18. To compute Ψ(BL) we make
use of Lemma 4.18 and count matchings based on which of the edges a, b, c, d, e
are saturated. Of the possibilities in Lemma 4.18, consider the maximal matchings
of BL containing only the edge a. Such a matching must also contain the edges
f and z, else this matching would contain one of the other edges d or e. The
remaining edges of the matching must be a maximal matching of Hn−2 \ {a, f}
and a maximal matching of Hn−1,n \ {c, z}. By directly counting, we find that
Ψ(Hn−1,n\{c, z}) = 4 and hence, the number of maximal matchings containing only
the edge a is 4 ·Ψ(Hn−2 \ {a, f}). We count the remaining cases from Lemma 4.18
similarly. We note that a Hn−1 \ c is used to count maximal matchings containing
the edges b or d, since these edges do not belong to the subgraphHn−2. For example,
the number of maximal matchings containing only the edge b is 3 ·Ψ(Hn−2 \{c, f}).
Thus

Ψ(BL) = 4 ·Ψ(Hn−2 \ {a, f}) + 3 ·Ψ(Hn−2 \ {c, f}) + 14 ·Ψ(Hn−2 \ c)
+ 4 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 9 ·Ψ(Hn−2 \ {a, e})
+ 7 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e}).

The remaining edges of the matching must be a maximal matching of Hn−2 \
{a, f} and a maximal matching of Hn−1,n\{c, z}. By directly counting, we find that
Ψ(Hn−1,n\{c, z}) = 4 and hence, the number of maximal matchings containing only
the edge a is 4 ·Ψ(Hn−2 \ {a, f}). We count the remaining cases from Lemma 4.18
similarly. We note that a Hn−1 \ c is used to count maximal matchings containing
the edges b or d, since these edges do not belong to the subgraph Hn−2.

Case 2. The hexagon hn attaches in the kinky position to the edge z and let
us denote the resulting graph by BK, see Figure 19. Counting as in Case 1 above
we obtain

Ψ(BK) = 6 ·Ψ(Hn−2 \ {a, f}) + 5 ·Ψ(Hn−2 \ {c, f}) + 12 ·Ψ(Hn−2 \ c)
+ 5 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 8 ·Ψ(Hn−2 \ {a, e})
+ 5 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e}).
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hn−2 hn−1

hn

· · ·

a b

c

def

g

h x

y

z

Figure 19: The benzenoid chain BK.

Now considering the terms in Ψ(BL), by Lemma 3.9 we have

Ψ(Hn−2 \ {a, c}) ≥ Ψ(Hn−2 \ {a, f}),
Ψ(Hn−2 \ {c}) ≥ Ψ(Hn−2 \ {c, f}), and

Ψ(Hn−2 \ {a, e}) ≥ Ψ(Hn−2 \ {e, h}),

implying that

Ψ(BL) ≥6 ·Ψ(Hn−2 \ {a, f}) + 5 ·Ψ(Hn−2 \ {c, f}) + 12 ·Ψ(Hn−2 \ c)
+ 5 ·Ψ(Hn−2 \ {e, h}) + 3 ·Ψ(Hn−2 \ {c, h}) + 8 ·Ψ(Hn−2 \ {a, e})
+ 5 ·Ψ(Hn−2 \ {a, c}) + 7 ·Ψ(Hn−2 \ {c, e})
≥ Ψ(BK).

The above proves that attaching a hexagon linearly gives more maximal match-
ings than attaching a hexagon in the kinky position. The inequality stated in the
theorem follows.

Again, we can see that the number of maximal matchings follows the same
pattern as the number of independent sets, contrary to the number of all and of
perfect matchings [26]. While the last two increase with the number of kinky
hexagons, the number of maximal matchings decreases.

5. FURTHER DEVELOPMENTS

In this last section we list some unresolved problems and indicate some pos-
sible directions of future research. We start by noting that, unlike the number of
perfect matchings which does not discriminate between left and right kinks, the
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number of maximal matchings seems to be sensitive to the direction of successive
turns. That complicates attempts to find the chains with the smallest number of
maximal matchings. Our computations indicate that the helicenes have the small-
est number of maximal matchings among all benzenoid chains of the same length.
Hence we state the following conjecture.

Conjecture 5.19. Let Bn be a benzenoid chain of length n. Then Ψ(Hn) ≤ Ψ(Bn).

Now we turn to some structural properties. The cardinality of any small-
est maximal matching in G is called the saturation number of G. The saturation
number is of interest in the context of random sequential adsorption, since it gives
the information on the worst possible case of clogging the substrate; see [7] for a
discussion and [1, 6, 4] for some specific cases. Also, see [27, 28] for some results
on random graphs. The saturation number can be also thought of as the inde-
pendent edge domination number. See [22] for an interesting application of this
approach to finding the saturation number of some nanostructures. However, it is
not enough to know the size of the worst possible case; it is also important to know
how (un)likely is it to happen. This brings us back to enumerative problems, since
the answer to this question depends on the ability to count maximal matchings of
a given size. A neat way to handle information about maximal matchings of differ-
ent sizes is to use the maximal matching polynomial. It was introduced in [7] and
some of its basic properties were established there. There are, however, many open
questions about this polynomial. For example, for ordinary (generating) matching
polynomials [8, 18] we know that their coefficients are log-concave. Is this valid
also for maximal matching polynomials? We have computed maximal matching
polynomials explicitly for several families of graphs, and we have enumerated max-
imal matchings in several other families. So far, no counterexample has been found,
but the proof still eludes us.

Another interesting thing to do would be to look at the dynamic aspect of
the problem, emulating the approach of Flory [9].

Finally, it would be interesting to extend our results on other classes of graphs,
such as rotagraphs, branching polymers, composite graphs and finite portions of
various lattices.
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200 Tomislav Došlić and Taylor Short

23. S. G. Wagner: On the number of matchings of a tree. Eur. J. Comb., 28 (2007),
1322–1330.

24. D. B. West: Introduction to Graph Theory. Prentice Hall, Upper Saddle River, 1996.

25. H. S. Wilf: generatingfunctionology. Academic Press, 1990.

26. L.-Z. Zhang: The proof of Gutman’s conjectures concerning extremal hexagonal
chains. J. System Sci. Math. Sci., 18 (1998), 460–465.

27. M. Zito: Small maximal matchings in random graphs. Theoret. Comput. Sci., 297
(2003), 487–507.

28. M. Zito: Randomized techniques in combinatorial algorithmics. Research Report CS-
RR-369, University of Warwick, Warwick, 1999.
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