
Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 15 (2021), 283–294.

https://doi.org/10.2298/AADM200206035N

THE TOTAL TORSION OF KNOTS UNDER SECOND

ORDER INFINITESIMAL BENDING

Marija S. Najdanović, Ljubica S. Velimirović∗ and Svetozar R. Rančić

In this paper we consider infinitesimal bending of the second order of curves

and knots. The total torsion of the knot during the second order infinitesimal

bending is discussed and expressions for the first and the second variation of

the total torsion are given. Some examples aimed to illustrate infinitesimal

bending of knots are shown using figures. Colors are used to illustrate torsion

values at different points of bent knots and the total torsion is numerically

calculated.

1. INTRODUCTION

One of the global properties of a curve C is its total torsion defined by the
integral T =

∫
C
τ(s) ds, where s and τ are the arc length and the torsion of C,

respectively. Geometrically, the total torsion is a measure of the binormal indica-
trix. It is well known that for any real number r there is a closed curve C such
that its total torsion is equal to r. Also, a classical result in differential geometry
assures that the total torsion of a closed spherical curve in the three-dimensional
space vanishes. Besides, if a surface is such that the total torsion vanishes for all
closed curves, it is part of a sphere or a plane. There are many investigations about
the total torsion (see, for instance [9]).

A knot is a simple closed curve in 3-space. The knowledge of curvature
and torsion profiles of a knot is essential, since it allows one to understand the
details of its shape. If, for instance, in a certain part of a knot its curvature and

∗Corresponding author. Ljubica S. Velimirović
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torsion are both constant, one can conclude that this part of the knot has a helical
shape [1] . The total curvature and the total torsion have many applications, for
instance, they provide important information about how much, and in what ways,
the knotted polymers turn in the space [8].

Infinitesimal bending of a curve or a surface in Euclidean 3-space, is a type of
deformations characterized with the rigidity of the arc length with a given precision.
In this case one observes changes of others magnitudes, and then we say that they
are rigid or flexible. Theory of infinitesimal bending is in close connection with
thin elastic shell theory and has a huge application from the mechanical point
of view. Infinitesimal bending of curves and surfaces is studied, for instance, in
[2, 6, 12, 13, 14]. Some results on infinitesimal transformations can be found in
[3, 5, 11]. Infinitesimal bending of knots is considered in [4, 7, 10].

2. SECOND ORDER INFINITESIMAL BENDING OF A CURVE IN
R3

Let us consider a regular curve

C : r = r(u), u ∈ J ⊆ R

of a class Cα, α ≥ 3, included in a family of the curves

Cϵ : r̃(u, ϵ) = rϵ(u) = r(u) + ϵ
(1)
z (u) + ϵ2

(2)
z (u),(1)

where ϵ ≥ 0, ϵ → 0 and we get C for ϵ = 0 (C = C0). The fields
(j)
z (u) ∈ Cα, α ≥

3, j = 1, 2, are continuous vector functions defined in the points of C.

Definition 1. [2] A family of curves Cϵ is an infinitesimal bending of the
second order of the curve C if

ds2ϵ − ds2 = o(ϵ2).

The field
(j)
z =

(j)
z (u) is the infinitesimal bending field of the order j, j = 1, 2,

of the curve C.

The previous condition is equivalent to the system of equations [2]:

dr · d
(1)
z = 0, 2dr · d

(2)
z + d

(1)
z · d

(1)
z = 0,

where · stands for the scalar product in R3.

Let {t,n1,n2} be an orthonormal basis along the curve C, where t is the
unit tangent, n1 and n2 are unit principal normal and binormal vector field of the
curve, respectively. We choose an orientation with n2 = t× n1. The next theorem
is related to determination of the infinitesimal bending field of a curve C.
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Theorem 1. [7] Infinitesimal bending fields of the first and the second order for
the curve C are respectively

(2)
(1)
z =

∫
[p(u)n1 + q(u)n2] du+ C1,

(3)
(2)
z =

∫
[−p2(u) + q2(u)

2∥ṙ∥
t+ r(u)n1 + g(u)n2] du+ C2,

where p(u), q(u), r(u), g(u) are arbitrary integrable functions and vectors t, n1, n2

are unit tangent, principal normal and binormal vector fields, respectively, of the
curve C. C1 and C2 are constants.

Under an infinitesimal bending geometric magnitudes of the curve are changed
which is described with variations of these geometric magnitudes.

Definition 2. [12] Let A = A(u) be a magnitude which characterizes a geometric
property on the curve C and Aϵ = Aϵ(u) the corresponding magnitude on the curve
Cϵ being an infinitesimal bending of the curve C and let the equation

∆A=Aϵ −A=ϵ δA+ ϵ2 δ2A+ . . .+ ϵn δnA+ . . .

be a valid one. The coefficients δA, δ2A, . . . , δnA, . . . are the first, the second,
..., the n-th variation of the geometric magnitude A, respectively under the in-
finitesimal bending Cϵ of the curve C.

In this paper we will only consider the first and the second variation of a
magnitude under infinitesimal bending of the second order. For this reason, we can
represent the magnitude Aϵ as

Aϵ = A+ ϵ δA+ ϵ2δ2A,

by neglecting the terms in ϵn, n ≥ 3. It is easy to see that under a second order
infinitesimal bending of a curve, the first and the second variation of a line element
ds are equal to zero, i. e. δ(ds) = δ2(ds) = 0. Also, some other properties of
variations are valid [6]:

I. δAB = A δB + B δA, δ2AB = A δ2B + B δ2A+ δA δB

II. δ(dAdu ) =
d(δA)
du , δ2(dAdu ) =

d(δ2A)
du

III. δ(dA) = d(δA), δ2(dA) = d(δ2A)

Below we will consider a regular curve

(4) C : r = r(s) = r[u(s)], s ∈ I = [0, L] ⊆ R,

parameterized by the arc length s. Let us consider an infinitesimal bending of the
second order of the curve (4):

Cϵ : r̃(s, ϵ) = rϵ(s) = r(s) + ϵ
(1)
z (s) + ϵ2

(2)
z (s).
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Since the vector fields
(1)
z and

(2)
z are defined in the points of the curve (4), they

can be presented in the form

(5)
(j)
z =

(j)
z t+

(j)
z1n1 +

(j)
z2n2, j = 1, 2,

where
(j)
z t is a tangential and

(j)
z1n1 +

(j)
z2n2 is a normal component,

(j)
z ,

(j)
z1 ,

(j)
z2 are

the functions of s.

The necessary and sufficient conditions for the second order infinitesimal
bending are given by the next theorem.

Theorem 2. [6] Necessary and sufficient conditions for the fields
(j)
z , j = 1, 2, (5)

to be infinitesimal bending fields of the corresponding order of a curve C (4) are

(6)

(1)
z ′ − k

(1)
z1 = 0,

(2)
z ′ − k

(2)
z1 = −1

2

{
[k

(1)
z +

(1)
z1

′ − τ
(1)
z2 ]

2 + [τ
(1)
z1 +

(1)
z2

′]2
}

where k is the curvature and τ is the torsion of C.

The first and the second variations of some geometric magnitudes of curves
are determined in the paper [6]. Some of them will be used in this paper, like δt,
δ2t, δn1, δn2, δk.

3. CHANGE OF THE TOTAL TORSION UNDER INFINITESIMAL
BENDING

Let us consider the total torsion of the curve C (4):

T =

∫
I
τ(s) ds.

The total torsion of deformed curve is

Tϵ =
∫
I
τϵ dsϵ =

∫
I
(τ + ϵ δτ + ϵ2 δ2τ)(ds+ ϵ δ ds+ ϵ2 δ2 ds).

Since δ ds = δ2ds = 0, we have

Tϵ = T + ϵ

∫
T
τ δτ ds+ ϵ2

∫
I
δ2τ ds,

which is obtained after neglecting the terms in ϵ3 and ϵ4. Therefore,

δT =

∫
I
δτ ds, δ2T =

∫
I
δ2τ ds.
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Let us take the first variation of the Frenet equation for n′
1 and dot with n2.

We have
δτ = kn2 · δt+ n2 · δn′

1.

We now rewrite the second term on the right hand side as

n2 · δn′
1 = (n2 · δn1)

′ − n′
2 · δn1 = (n2 · δn1)

′,

after using the third Frenet equation. Using the expressions for δt and δn1 [6], as
well as the first equation in (6), we obtain the first variation of the torsion:

δτ = τ ′
(1)
z + 2kτ

(1)
z1 − k′

(1)
z2 +

{1

k

[
2τ

(1)
z1

′ + τ ′
(1)
z1 +

(1)
z2

′′ + (k2 − τ2)
(1)
z2
]}′

.

We used the next transformations:

[
1

k
(kτ

(1)
z )]′ = (τ

(1)
z )′ = τ ′

(1)
z + τ

(1)
z ′ = τ ′

(1)
z + τk

(1)
z1 , (

(1)
z ′ − k

(1)
z1 = 0),

k
(1)
z2

′ = (k
(1)
z2)

′ − k′
(1)
z2 .

The first variation of the total torsion is now

δT =

∫
I
(τ ′

(1)
z + 2kτ

(1)
z1 − k′

(1)
z2) ds

+

∫
I

{1

k

[
2τ

(1)
z1

′ + τ ′
(1)
z1 +

(1)
z2

′′ + (k2 − τ2)
(1)
z2
]}′

ds.

In the case of the infinitesimal bending of knots we specify the condition
z(0) = z(L) for the infinitesimal bending field in order to get a family of closed
curves. Also, we suppose that the knot, as well as the infinitesimal bending field
are sufficiently smooth. Keeping this in mind we have the following theorem.

Theorem 3. Under a second order infinitesimal bending of a knot C, the first
variation of its total torsion is

δT =

∫
I
(τ ′

(1)
z + 2kτ

(1)
z1 − k′

(1)
z2) ds,

where k is the curvature and τ is the torsion of C.

Before we begin to examine the second variation of the total torsion, let us
determine δ2n1, which will be used below. Starting from the equation n1 · n1 = 1
and using the second variation of its, we obtain

n1 · δ2n1 = −1

2
δn1 · δn1.

Using the expression for δn1 [6], we have

(7) n1 · δ2n1 = −1

2
[(k

(1)
z +

(1)
z1

′ − τ
(1)
z2)

2 +
1

k2
(kτ

(1)
z +2τ

(1)
z1

′ + τ ′
(1)
z1 +

(1)
z2

′′ − τ2
(1)
z2)

2].
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From the equation n1 · t = 0, using the second variation, we obtain

t · δ2n1 = −n1 · δ2t− δn1 · δt.

If we make use of δt, δ2t, and δn1 [6], we get

(8)
t · δ2n1 = −(k

(2)
z +

(2)
z1

′ − τ
(2)
z2 − 1

k
(
(1)
z2

′ + τ
(1)
z1)(kτ

(1)
z + 2τ

(1)
z1

′

+ τ ′
(1)
z1 +

(1)
z2

′′ − τ2
(1)
z2).

Let us take the second variation of the equation t′ = kn1 and dot with n2.
We obtain

n2 · δ2n1 =
1

k
(n2 · δ2t′ − δkn2 · δn1).

To evaluate δ2t′ we use δ2t′ = (δ2t)′, the expression for δ2t [6] and Frenet equations.
Dotting with n2 we obtain

n2 · δ2t′ = τ(k
(2)
z +

(2)
z1

′ − τ
(2)
z2) + (

(2)
z2

′ + τ
(2)
z1)

′.

Finally, we have
(9)

n2 · δ2n1 =
1

k

[
τ(k

(2)
z +

(2)
z1

′ − τ
(2)
z2) + (

(2)
z2

′ + τ
(2)
z1)

′ − 1

k
(k′

(1)
z +

(1)
z1

′′ + (k2 − τ2)
(1)
z1

− 2τ
(1)
z2

′ − τ ′
(1)
z2)(kτ

(1)
z + 2τ

(1)
z1

′ + τ ′
(1)
z1 +

(1)
z2

′′ − τ2
(1)
z2)

]
.

The equations (7), (8) and (9) gives the normal, the tangent and the binormal
component of δ2n1, respectively.

Let us go back to the torsion. For the second variation of the torsion let us
take the second variation of the second Frenet equation. We have

δ2n′
1 = −δ2kt− kδ2t− δkδt+ δ2τn2 + τδ2n2 + δτδn2.

Dotting with n2 we obtain

δ2τ = (n2 · δ2n1)
′ + τn1 · δ2n1 + kn2 · δ2t+ δk n2 · δt− τn2 · δ2n2.

We used n2 · δn2 = 0 and also

n2 · δ2n′
1 = n2 · (δ2n1)

′ = (n2 · δ2n1)
′ − n′

2 · δ2n1 = (n2 · δ2n1)
′ + τn1 · δ2n1,

wherefrom we have

δ2τ =
{1

k

[
τ(k

(2)
z +

(2)
z1

′ − τ
(2)
z2) + (

(2)
z2

′ + τ
(2)
z1)

′ − 1

k
(k′

(1)
z +

(1)
z1

′′ + (k2 − τ2)
(1)
z1

− 2τ
(1)
z2

′ − τ ′
(1)
z2)(kτ

(1)
z + 2τ

(1)
z1

′ + τ ′
(1)
z1 +

(1)
z2

′′ − τ2
(1)
z2)

]}′

− τ

2

[
(k

(1)
z +

(1)
z1

′ − τ
(1)
z2)

2 − (
(1)
z2

′ + τ
(1)
z1)

2
]
+ k(

(2)
z2

′ + τ
(2)
z1)

+ (k′
(1)
z +

(1)
z1

′′ + (k2 − τ2)
(1)
z1 − 2τ

(1)
z2

′ − τ ′
(1)
z2)(

(1)
z2

′ + τ
(1)
z1).
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Based on the necessary and sufficient conditions for the second order infinites-
imal bending (6), we have

(τ
(1)
z1 +

(1)
z2

′)2 = −2(
(2)
z ′ − k

(2)
z1)− (k

(1)
z +

(1)
z1

′ − τ
(1)
z2)

2.

Let us use this in the expression for δ2τ , as well as τ
(2)
z ′ = (τ

(2)
z )′ − τ ′

(2)
z and

k
(2)
z2

′ = (k
(2)
z2)

′ − k′
(2)
z2 . Also, let us use the next notation

(10)
f(

(1)
z ) = −τ(k

(1)
z +

(1)
z1

′ − τ
(1)
z2)

2 + (k′
(1)
z +

(1)
z1

′′ + (k2 − τ2)
(1)
z1

− 2τ
(1)
z2

′ − τ ′
(1)
z2)(

(1)
z2

′ + τ
(1)
z1).

Now we have

(11)

δ2τ =
{1

k

[
τ(k

(2)
z +

(2)
z1

′ − τ
(2)
z2) + (

(2)
z2

′ + τ
(2)
z1)

′ − 1

k
(k′

(1)
z +

(1)
z1

′′ + (k2 − τ2)
(1)
z1

− 2τ
(1)
z2

′ − τ ′
(1)
z2)(kτ

(1)
z + 2τ

(1)
z1

′ + τ ′
(1)
z1 +

(1)
z2

′′ − τ2
(1)
z2)

]
− τ

(2)
z + k

(2)
z2

}′

+ τ ′
(2)
z + 2kτ

(2)
z1 − k′

(2)
z2 + f(

(1)
z ).

The second variation of the total torsion will be
(12)

δ2T =

∫
I

{1

k

[
τ(k

(2)
z +

(2)
z1

′ − τ
(2)
z2) + (

(2)
z2

′ + τ
(2)
z1)

′ − 1

k
(k′

(1)
z +

(1)
z1

′′ + (k2 − τ2)
(1)
z1

− 2τ
(1)
z2

′ − τ ′
(1)
z2)(kτ

(1)
z + 2τ

(1)
z1

′ + τ ′
(1)
z1 +

(1)
z2

′′ − τ2
(1)
z2)

]
− τ

(2)
z + k

(2)
z2

}′
ds

+

∫
I
(τ ′

(2)
z + 2kτ

(2)
z1 − k′

(2)
z2) ds+

∫
I
f(

(1)
z ) ds.

Finally we have the next theorem.

Theorem 4. Under a second order infinitesimal bending of a knot C, the second
variation of its total torsion is

(13) δ2T =

∫
I
(τ ′

(2)
z + 2kτ

(2)
z1 − k′

(2)
z2) ds+

∫
I
f(

(1)
z ) ds,

where k is the curvature, τ is the torsion of C, and f(
(1)
z ) is given in (10).

4. TORSION OF INFINITESIMALLY BENT KNOTS

Here we will consider influence of infinitesimal bending on knots defined by
a simple parametric representation. Infinitesimal bending has an influence on the
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knotted curve, on its shape and geometrical magnitudes and we will give some
examples. Our aim is to visualise changes in shape and torsion. In following figures
colors are used to indicate the values of torsion at different points of the knots,
together with color-values scale. In addition the total torsion is also calculated.

We start from knot representations as a curve in R3. Then, according to (1)
we apply the bending of the first and second order given by (2) and (3). Bending
fields are defined by integrals whose sub integral function includes arbitrary func-
tions: p, q, r and g. The curve is visualized as polygonal line which connect points
on curve. At every such point, as well as, every subdivision point for the purpose of
numerically integral calculation we should calculate functions: the curve, first, sec-
ond and third derivative, both normals of the curve, p, q, r and g, also local values
of torsion. This is necessary to obtain transformed shape of curve and for aimed
curve coloring. Instead of using existing software packages capable of symbolic and
numeric calculations also with some visualization features, we decided to develop
our own software tool usingMicrosoft Visual C++. We are dealing, according to
(1), (2) and (3), with arbitrary mathematical functions, so tool is developed for
manipulating explicitly defined functions. It starts from usual symbolic definitions
as a string, then parsing it to obtain an internal, tree like, function form. For the
purpose of efficiency the function is parsed once, then calculated many times. We
also have some additional important benefits of the tree like form: make derivatives,
combine more function to obtain a compound function like sub integral function
for infinitesimal bending fields. Our tool has not possibility to calculate integral
symbolically, instead we are using ability for fast calculation of sub integral func-
tion. Those values are used to calculate needed integral numerically, according to
F (x) =

∫ x

0
f(x)dx.

Knot visualization and obtaining 3D model is done by using OpenGL. In the
following examples the knot is represented as a tube around a curve. It looks like
a rope, but without examination any physical characteristics of the rope.

4.1 Trefoil knot

A trefoil knot is given by the parametric equations: x = sin(u) + 2 sin(2u),
y = cos(u) − 2 cos(2u), z = − sin(3u). The basic and infinitesimally bent trefoil
knots are given in Figs. 1 and 2. The bending fields are defined by: p(u) = 0,
q(u) = 0, r(u) = cos(3u) and g(u) = sin(6u).

The numerically calculated total torsion of the trefoil knot curve is 2.2250,
2.2354 and 2.3708 for ϵ = 0, ϵ = 0.55 and ϵ = 1.1 respectively.
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Figure 1: Trefoil knot: basic and infinitesimally bent with ϵ = 0.55.

Figure 2: Trefoil knot: infinitesimally bent with ϵ = 1.1 and all knots together.

A second example of the trefoil knot is knot given by the parametric equa-
tions: x = (cos(2u) + 2) ∗ cos(3u), y = (cos(2u) + 2) ∗ sin(3u), z = − sin(2u), which
is a kind of torus knot, obtained for p = 3, q = 2, topologically equivalent to the
trefoil knot. The basic and infinitesimally bent knots are given in Figs. 3 and 4.
The bending fields are defined by: p(u) = 0, q(u) = 0, r(u) = 0 and g(u) = sin(2u).

The numerically calculated total torsion of the p = 3, q = 2 torus knot is
0.6234, 0.6128 and 0.4725 for ϵ = 0, ϵ = 0.8 and ϵ = 1.6 respectively.
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Figure 3: p = 3, q = 2 torus knot: basic and infinitesimally bent with ϵ = 0.8.

Figure 4: p = 3, q = 2 torus knot: infinitesimally bent with ϵ = 1.6 and all knots
together.

4.2 Figure eight knot

A figure eight knot is given by the parametric equations: x = (2+ cos(2u)) ∗
cos(3u), y = (2+cos(2u))∗ sin(3u), z = sin(4u). The basic and infinitesimally bent
figure eight knot are given in Figs. 5 and 6.

The bending fields are defined by: p(u) = 0, q(u) = 0, r(u) = − cos(2u) and
g(u) = sin(2u).

The numerically calculated total torsion of the figure eight knot curve is
−0.5423, −0.4843 and −0.3033 for ϵ = 0, ϵ = 0.76 and ϵ = 1.52 respectively.
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Figure 5: Figure eight knot: basic and infinitesimally bent with ϵ = 0.76.

Figure 6: Figure eight knot: infinitesimally bent with ϵ = 1.52 and all knots
together.
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5. Mikeš J. et al., Differential geometry of special mappings, Palacky University,
Olomouc, 1.ed. 2015, 2. ed. 2019.

6. Najdanović, M. S., Velimirović, Lj. S., Second order infinites-
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