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SHARP DOUBLE-EXPONENT TYPE BOUNDS FOR

THE LEMNISCATE SINE FUNCTION

Tie-Hong Zhao and Miao-Kun Wang∗

In this paper, we will establish sharp inequalities of the lemniscate sine func-
tion and the so-called weighted (p, q)-exponential type function, of which the
latter is an extension of the weighted Hölder mean. These results provide
a systematic method for the previous obtained inequalities and give great
improvements for bounds of the lemniscate sine function. As applications,
several high accuracy approximations for the lemniscate sine function are also
derived.

1. INTRODUCTION

Gauss’ arc lemniscate sine is defined as follows

(1) arcslx =

∫ x

0

dt√
1− t4

for |x| ≤ 1, see [3, p. 259] and [4, (2.5)]. This function has a simple geometric
interpretation, the arc length of which measured from the origin to a point with
polar coordinates on the Bernoulli lemniscate r2 = cos 2θ is arcsl r. Throughout
this paper, the first lemniscate constant ω (c.f. [3, Theorem 1.7] and [10, 19.20.2])
is given by

ω = arcsl(1) =
1√
2
K(1/

√
2) =

[Γ(1/4)]2

4
√
2π

≈ 1.3110,
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where Γ(x) =
∫∞
0

tx−1e−tdt (Rex > 0) is the classical Euler gamma function
[12, 29, 30, 33] and

K(r) =

∫ π/2

0

dθ√
1− r2 sin2 θ

=
π

2
F
(
1
2 ,

1
2 ; 1; r

2
)

(0 < r < 1) is the complete elliptic integral of the first kind [13, 26, 31, 32]. Here
F (a, b; c;x) is the Gaussian hypergeometric function defined, for a, b, c ∈ R with
c ̸= 0,−1,−2, · · · , by

F (a, b; c;x) ≡ 2F1(a, b; c;x) =

∞∑
n=0

(a)n(b)n
(c)n

xn

n!
, |x| < 1,

where (a)0 = 1 for a ̸= 0 and (a)n = a(a+1)(a+2) · · · (a+n− 1) = Γ(a+n)/Γ(a)
is the shifted factorial function or the Pochhammer symbol. For more information
on these functions and recently obtained related results, we refer the reader to
[6, 8, 11, 15, 16, 17, 18, 19, 35, 36, 37, 38, 39, 41, 42, 43].

It has been proved in [5, Lemma 1] that the lemniscate function arcslx can
be expressed in temrs of Gaussian hypergeometric function, as follows

(2) arcslx =

∞∑
n=0

Γ(n+ 1
2 )√

π(4n+ 1) · n!
x4n+1 = xF

(
1
4 ,

1
2 ;

5
4 ;x

4
)
.

The initial thread for this investigation begins with the following elegant
inequality (

5

3 + 2
√
1− x4

)1/2

<
arcslx

x
<

1

(1− x4)1/10

for all 0 < |x| < 1, which is due to Neuman [9] in 2012, and namely the computable
bounds for the lemniscate sine function are obtained.

Recently, in the study of Shafer-Fink’s inequalities for the lemniscate func-
tions, Wei, He and Wang [20] proved that the inequalities

ω

1 + (ω − 1) 4
√
1− x4

<
arcslx

x
<

5

3 + 2 4
√
1− x4

,(3)

5

4 +
√
1− x4

<
arcslx

x
<

ω

1 + (ω − 1)
√
1− x4

.(4)

hold for 0 < |x| < 1.

By studying simple bounds for the lemniscate type means, Zhao, Qian and
Chu [40] established new bounds for the lemniscate sine function

(5)

(
5

3 + 2
√
1− x4

)1/2

<
arcslx

x
<

(
ω2

1 + (ω2 − 1)
√
1− x4

)1/2

for all 0 < |x| < 1.
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For (p, q) ∈ R2 with pq ̸= 0 and α ∈ (0, 1), we denote

(6) Hα(x; p, q) =
[
(1− α) + α(1− x4)p

]−1/q

for 0 < |x| < 1. In the case of p2 + q2 = 0, if lim(p,q)→(0,0)(p/q) = λ ̸= 0, we can
define

Hα(x;λ) = (1− x4)−λα.

It is worth noting that Hα(x; p, q) or Hα(x;λ) degenerates to the infinite or a
constant for other cases.

By applying (6), the inequalities (3)-(5) can be rewritten as

H1− 1
ω
(x; 1

4 , 1) <
arcslx

x
< H 2

5
(x;

1

4
, 1),

H 1
5
(x; 1

2 , 1) <
arcslx

x
< H1− 1

ω
(x; 1

2 , 1),

H 2
5
(x; 1

2 , 2) <
arcslx

x
< H1− 1

ω2
(x; 1

2 , 2)

for all 0 < |x| < 1.

In light of these inequalities, it is natural to ask the following questions:

� Can these be extended to approximate (arcslx)/x by the function Hα(x; p, q)
defined in (6) for fixed (p, q) ∈ R2?

� Given (p, q) ∈ R2, what are the best possible parameters α, β ∈ (0, 1) such
that

Hα(x; p, q) <
arcslx

x
< Hβ(x; p, q)

for all 0 < |x| < 1?

The main goal of this paper is to answer the above questions.

2. PRELIMINARIES

2.1 Tools

To prove our results, we need two tools. The first tool is L’Hôpital Monotone
Rule (see [1, Theorem 1.25]) which play an important role in dealing with the
monotonicity of the ratio of two functions.
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Proposition 1. Let a, b ∈ R with a < b, f, g : [a, b] 7→ R be continuous on [a, b]
and differentiable on (a, b). If f ′/g′ is increasing (decreasing) on (a, b), then so are
the functions

f(x)− f(a)

g(x)− g(a)
and

f(x)− f(b)

g(x)− g(b)
.

If f ′/g′ is strict monotone, then the monotonicity in the conclusion is also strict.

Sometimes, f ′/g′ is not monotone but piecewise monotone. We now introduce
a useful auxiliary function Hf,g (called H-funuction, see [14, 34]), which makes a
bridge between the derivatives of the ratios f/g and f ′/g′. For −∞ ≤ a < b ≤ ∞,
let f and g be differentiable on (a, b) and g′ ̸= 0 on (a, b). Then the function Hf,g

is defined by

(7) Hf,g :=
f ′

g′
g − f.

The function Hf,g has some well properties [22, Properties 1,2]. In particular, if f
and g are twice differentiable on (a, b), then we have(

f

g

)′

=
g′

g2

(
f ′

g′
g − f

)
=

g′

g2
Hf,g,(8)

H′
f,g =

(
f ′

g′

)′

g.(9)

The second tool is a simple and useful criterion to determine the sign of a
class of special series. The special series is named “Negative-Positive type power
series” defined as follows.

Definition 2. [32, Definition 1] Let m ≥ 0 be an integer. A power series S(t)
given by

S(t) = −
m∑

k=0

akt
k +

∞∑
k=m+1

akt
k

is called a “Negative-Positive type power series”, or “NP type power series” for
short, if its coefficients ak for k ≥ 0 satisfy

(i) ak ≥ 0 for all k ≥ 0;

(ii) there exist at least two integers 0 ≤ k1 ≤ m and k2 ≥ m + 1 such that
ak1 , ak2 > 0.

Proposition 3. Let S(t) be a Negative-Positive type power series converging on
the interval (0, r) (r > 0). Then the following statements are true:

(1) If S(r−) ≤ 0, then S(t) < 0 for all t ∈ (0, r);

(2) If S(r−) > 0, then there exists t0 ∈ (0, r) such that S(t) < 0 for t ∈ (0, t0)
and S(t) > 0 for t ∈ (t0, r).
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Remark 4. In Definition 2, −S(t) is called a “Positive-Negative type” (or “PN
type” for short) power series. Further, if ak = 0 for k ≥ k2 + 1, then S(t) is called
a “Negative-Positive type polynomial of degree k2”, or “NP type polynomial” for
short. Likewise, −S(t) is called a “Positive-Negative type polynomial of degree
k2”, or “PN type polynomial” for short. A polynomial version of Proposition 3
appeared in [24], and another version of the series converging on (0,∞) can be
found in [23].

Remark 5. Proposition 3 was proved in [28], which is a revised version of the
electronic preprint [27], and proved differently in [26]. As a consequence of Propo-
sition 3(2), for given t1 ∈ (0, r), if S(t1) > 0, then S(t) > 0 for all t ∈ (t1, r), and if
S(t1) < 0, then S(t) < 0 for all t ∈ (0, t1).

2.2 Lemmas

In this section, we will present several lemmas which are used to prove the main
results.

Lemma 6. For 0 < |x| < 1, we have(
arcslx

x

)2

=

∞∑
n=0

( 34 )n

(2n+ 1)( 54 )n
x4n,(10)

arcslx

x
√
1− x4

=

∞∑
n=0

( 34 )n

( 54 )n
x4n.(11)

Proof. For c = a + b + 1/2, it has been demonstrated in [21, Example 14.11] (see
also [7]) that

[
F (a, b; c;x)

]2
=

Γ(c)Γ(2c− 1)

Γ(2a)Γ(2b)Γ(a+ b)

∞∑
n=0

Γ(2a+ n)Γ(a+ b+ n)Γ(2b+ n)

n!Γ(c+ n)Γ(2c− 1 + n)
xn

(12)

=

∞∑
n=0

(2a)n(2b)n(a+ b)n
n!(c)n(2c− 1)n

xn.

According to (2), taking a = 1/2, b = 1/4 and c = 5/4 into (12) yields(
arcslx

x

)2

=
[
F ( 12 ,

1
4 ;

5
4 ;x

4)
]2

=

∞∑
n=0

(1)n(
1
2 )n(

3
4 )n

n!( 54 )n(
3
2 )n

x4n =

∞∑
n=0

( 34 )n

(2n+ 1)( 54 )n
x4n,

which gives (10).

It is observed from (1) that the derivative of arcslx is give by

d arcslx

dx
=

1√
1− x4

.
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By this, it follows from (10) that

arcslx

x
√
1− x4

=
1

2x

d arcsl2 x

dx
=

∞∑
n=0

( 34 )n

( 54 )n
x4n.

This completes the proofs.

Lemma 7. Let

φ1(x) = 1 + (3− x4)
arcslx

x
√
1− x4

− 4

(
arcslx

x

)2

,

φ2(x) = x4

[
arcslx

x
√
1− x4

−
(
arcslx

x

)2
]
,

φ3(x) = 1− (1− x4)

[
2 arcslx

x
√
1− x4

−
(
arcslx

x

)2
]

for 0 < x < 1. Then φi(x) (i = 1, 2, 3) is absolutely monotonic on (0, 1). More
precisely, we have the following series expansions

φ1(x) =

∞∑
n=2

16n(n− 1)( 34 )n

(2n+ 1)(4n− 1)( 54 )n
x4n, φ2(x) =

∞∑
n=2

2(n− 1)(4n+ 1)( 34 )n

(2n− 1)(4n− 1)( 54 )n
x4n,

φ3(x) =

∞∑
n=2

4(n− 1)(4n+ 1)( 34 )n

(4n2 − 1)(4n− 1)( 54 )n
x4n.

Proof. From the formulas (10) and (11), it follows that

φ1(x) = 1 + (3− x4)

∞∑
n=0

( 34 )n

( 54 )n
x4n − 4

∞∑
n=0

( 34 )n

(2n+ 1)( 54 )n
x4n

=

∞∑
n=2

(
3− 4

2n+ 1

)
( 34 )n

( 54 )n
x4n −

∞∑
n=1

( 34 )n

( 54 )n
x4(n+1)

=

∞∑
n=2

(6n− 1)( 34 )n

(2n+ 1)( 54 )n
x4n −

∞∑
n=2

( 34 )n−1

( 54 )n−1

x4n

=

∞∑
n=2

(
6n− 1

2n+ 1
− 4n+ 1

4n− 1

)
( 34 )n

( 54 )n
x4n =

∞∑
n=2

16n(n− 1)( 34 )n

(2n+ 1)(4n− 1)( 54 )n
x4n,

φ2(x) = x4

[ ∞∑
n=0

( 34 )n

( 54 )n
x4n −

∞∑
n=0

( 34 )n

(2n+ 1)( 54 )n
x4n

]
=

∞∑
n=1

2n( 34 )n

(2n+ 1)( 54 )n
x4(n+1)

=

∞∑
n=2

2(n− 1)( 34 )n−1

(2n− 1)( 54 )n−1

x4n =

∞∑
n=2

2(n− 1)(4n+ 1)( 34 )n

(2n− 1)(4n− 1)( 54 )n
x4n
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and

φ3(x) = 1− (1− x4)

[ ∞∑
n=0

2( 34 )n

( 54 )n
x4n −

∞∑
n=0

( 34 )n

(2n+ 1)( 54 )n
x4n

]

=

∞∑
n=1

(4n+ 1)( 34 )n

(2n+ 1)( 54 )n
x4(n+1) −

∞∑
n=2

(4n+ 1)( 34 )n

(2n+ 1)( 54 )n
x4n

=

∞∑
n=2

(4n− 3)(4n+ 1)( 34 )n

(2n− 1)(4n− 1)( 54 )n
x4n −

∞∑
n=2

(4n+ 1)( 34 )n

(2n+ 1)( 54 )n
x4n

=

∞∑
n=2

4(n− 1)(4n+ 1)( 34 )n

(4n2 − 1)(4n− 1)( 54 )n
x4n.

This completes the proofs.

Lemma 8. The function

x 7→ log(x/ arcslx)

log(1− x4)

is strictly decreasing from (0, 1) onto (0, 1/10).

Proof. Let ϕ1(x) = log(x/ arcslx) and ϕ2(x) = log(1 − x4). Then differentiation
yields

ϕ′
1(x)

ϕ′
2(x)

= −
√
1− x4(x−

√
1− x4 arcslx)

4x4 arcslx
,[

ϕ′
1(x)

ϕ′
2(x)

]′
= −

x2 + x(3− x4) arcsl x√
1−x4

− 4 arcsl2 x

4x5 arcsl2 x
= − φ1(x)

4x3 arcsl2 x
,(13)

where φ1(x) is defined as in Lemma 7.

It follows from Lemma 7 and (13) that φ′
1(x)/φ

′
2(x) is strictly decreasing on

(0, 1).Using Proposition 1 gives that

ϕ1(x)

ϕ2(x)
=

ϕ1(x)− ϕ1(0
+)

ϕ2(x)− ϕ2(0+)

is strictly decreasing on (0, 1). It is apparent to obtain two limiting values easily
by l’Hôpital rule.

Lemma 9. Let (p, q) ∈ R2 and define the function x 7→ ξp,q(x) on (0,∞) by

ξp,q(x) = 8(2p− 1)x2 + 4(3p− q + 1)x+ 2p− q.

Then we have the following conclusions:

(1) In the case of p = 1/2,

⋄ ξp,q(x) < 0 for x ≥ 2 if and only if q ≥ 5/2;



Sharp double-exponent type bounds for the lemniscate sine function 155

⋄ ξp,q(x) ≥ 0 for x ≥ 2 if and only if q ≤ 7/3 with the equal only at x = 2;

⋄ if 7/3 < q < 5/2, then there exists x̃0 > 2 such that ξp,q(x) < 0 for
x ∈ [2, x̃0) and ξp,q(x) > 0 for x ∈ (x̃0,∞).

(2) In the case of p > 1/2,

⋄ ξp,q(x) ≥ 0 for x ≥ 2 if and only if q ≤ 10p− 8/3 with the equal only at
x = 2;

⋄ if q > 10p − 8/3, then there exists x̃1 > 2 such that ξp,q(x) < 0 for
x ∈ [2, x̃1) and ξp,q(x) > 0 for x ∈ (x̃1,∞).

(3) In the case of p < 1/2,

⋄ ξp,q(x) ≤ 0 for x ≥ 2 if q ≥ q̂(p), where

q̂(p) =

{
10p− 8

3 , p ≤ 13
27 ,

p+ 2−
√
3(1− 2p), 13

27 < p < 1
2 .

In particular, in the case of q = 10p − 8/3, namely, ξp,q(2) = 0, if
13/27 < p ≤ 19/39, then ξp,q(x) ≤ 0 for x ≥ 3; if 19/39 < p < 1/2, then
there exists x̃2 > 3 such that ξp,q(x) > 0 for x ∈ [3, x̃2) and ξp,q(x) < 0
for x ∈ (x̃2,∞).

⋄ If q < 10p − 8/3, then there exists x̃3 > 2 such that ξp,q(x) > 0 for
x ∈ [2, x̃3) and ξp,q(x) < 0 for x ∈ (x̃3,∞).

Proof. We now divide into three cases to complete the proof.

Case 1 p = 1/2.
In this case, ξp,q(x) possibly reduces to a linear function.

� ξp,q(x) ≤ 0 for x ≥ 2 if and only if 3p − q + 1 ≤ 0 and ξp,q(2) =
3(30p − 3q − 8) ≤ 0, equivalently, q ≥ 5/2. At this point, ξ1/2,q(2) =
3(7− 3q) ≤ −3/2, which gives ξp,q(x) < 0 for x ≥ 2.

� ξp,q(x) ≥ 0 for x ≥ 2 if and only if 3p − q + 1 ≥ 0 and ξp,q(2) ≥ 0,
equivalently, q ≤ 7/3. It was observed that ξ1/2,q(x) = 1 + 10x− q(1 +
4x) ≥ 1 + 10x − 7(1 + 4x)/3 = 2(x − 2)/3 ≥ 0, which implies that
ξp,q(x) = 0 only holds for x = 2.

� If 7/3 < q < 5/2, then ξ1/2,q(x) is a linear and increasing function. This
together with ξ1/2,q(2) = 3(7− 3q) < 0 implies that there exists x̃0 > 2
such that ξp,q(x) < 0 for x ∈ (2, x̃0) and ξp,q(x) > 0 for x ∈ (x̃0,∞).

Case 2 p > 1/2.
In this case, ξp,q(x) is a quadratic function whose graph is a upward opening
parabola. Let us denote the symmetric axes of ξp,q(x) by

xs =
1 + 3p− q

4(1− 2p)
.

We divide the proof into two subcases.
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� If q ≤ 10p− 8/3, then ξp,q(2) ≥ 0 and

xs ≤
1 + 3p− (10p− 8/3)

4(1− 2p)
= 2− 27p− 13

2p− 1
< 2.

which demonstrates that ξp,q(x) is strictly increasing on (2,∞). So
ξp,q(x) ≥ ξp,q(2) ≥ 0 for x ≥ 2. In particular, ξp,q(x) = 0 holds only at
x = 2.

� If q > 10p− 8/3, namely, ξp,q(2) < 0, then the graph property of ξp,q(x)
enables us to know that there exists x̃1 > 2 such that ξp,q(x) < 0 for
x ∈ (2, x̃1) and ξp,q(x) > 0 for x ∈ (x̃1,∞).

Case 3 p < 1/2.
Now the graph of ξp,q(x) is a downward opening parabola. As in Case 2, we
divide the proof into two subcases.

� If ξp,q(2) ≤ 0, then q ≥ 10p− 8/3. We will discuss in two subsubcases.

◦ xs ≤ 2. Then we have q ≥ 19p − 7. Hence ξp,q(x) ≤ ξp,q(2) = 0
for x ≥ 2 due to the monotonicity of ξp,q(x). In this subcase, q ≥
max{10p− 8/3, 19p− 7} which is equivalent to

(14) p ≤ 13

27
and q ≥ 10p− 8

3
or

13

27
< p <

1

2
and q ≥ 19p− 7.

◦ xs > 2. Then 13/27 < p < 1/2 and 10p− 8/3 ≤ q < 19p− 7. In this
subsubcase, from the property of quadratic function, there is still a
situation such that ξp,q(x) ≤ 0 for x ≥ 2. That is, the determination
of ξp,q(x) is non-positive, more precisely,

∆(p, q) = 16[q2 − 2(p+ 2)q + p2 + 10p+ 1] ≤ 0,

which can be solved as

(15) p+ 2−
√

3(1− 2p) ≤ q ≤ p+ 2 +
√
3(1− 2p).

It was observed that

∆(p, 10p− 8/3) =
(27p− 13)2

9
> 0

and

∆(p, 19p− 7) = −6(1− 2p)(27p− 13) < 0.

This together with the graphic property of q 7→ ∆(p, q) and (15)
leads to the conclusion that (p, q) needs to satisfy

(16)
13

27
< p <

1

2
and p+ 2−

√
3(1− 2p) ≤ q < 19p− 7.
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In summary, in this subsubcase, ξp,q(x) ≤ 0 for x ≥ 2 if q ≥ q̂(p), where
q̂(p) can be defined by (14) and (16). In particular, in the subsubcase of
q = 10p − 8/3, we clearly see that ξp,q(2) = 0. If 13 < 27 < p ≤ 19/39,
then it follows that

(17) ξp,q(x) = −8(1− 2p)(x− 2)

[
x− 3 +

19− 39p

6(1− 2p)

]
≤ 0

for x ≥ 3. If 19/39 < p < 1/2, then it follows from (17) that ξp,q(3) > 0,
which in conjunction with the graph of ξp,q implies that there exists x̃2 >
3 such that ξp,q(x) > 0 for x ∈ [3, x̃2) and ξp,q(x) < 0 for x ∈ (x̃2,∞).

� If ξp,q(2) > 0, that is, q < 10p − 8/3, then by the property of graph, it
shows that there exists x̃3 > 2 such that ξp,q(x) > 0 for x ∈ (2, x̃3) and
ξp,q(x) < 0 for x ∈ (x̃3,∞).

Remark 10. Due to Lemma 9, it remains to discuss the sign of ξp,q(x) for x ≥ 2
in the case of (p, q) ∈ R0, where

R0 =
{
(p, q)

∣∣∣ 13
27 < p < 1

2 , 10p− 8
3 < q < p+ 2−

√
3(1− 2p)

}
.

As a matter of fact, in this case, the sign of ξp,q(x) will change alternately with x,
which can not be easily dealt with in the sequel. For the sake of clarity, the regions
(p, q) of Lemma 9 will be illustrated in Figure 1.

3. MAIN RESULTS

Before proving the main results, we will show the following monotonicity
theorem. Lemma 9 will be used to prove Theorem 11. To facilitate the presentation,
we need to divide the regions of (p, q) in Lemma 9.

Since p and q are required to be non-zero in Theorem 11, the regions of (p, q)
in three cases of Lemma 9 should minus two axes, which are expressed by

R 1
2
=

{
(p, q) ∈ R2

0

∣∣∣∣ p =
1

2

}
, R+

1
2

=

{
(p, q) ∈ R2

0

∣∣∣∣ p >
1

2

}
,

R−
1
2

=

{
(p, q) ∈ R2

0

∣∣∣∣ p < 1
2 ,

q < 10p− 8
3 or q ≥ q̂(p)

}
,

where R0 denotes the set of non-zero real numbers. Further, we define several
regions as follows:

R1,1 =

{
p < 0,
q > 0

}
, R1,2 =

{
0 < p < 1

2 ,
10p− 8

3 ≤ q < 0

}
, R1,3 =

{
p = 1

2 ,
0 < q ≤ 7

3

}
,
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R1,4 =

{
p > 1

2 ,
0 < q ≤ 10p− 8

3

}
, R2,1 =

{
p > 1

2 ,
q < 0

}
, R2,2 =

{
p = 1

2 ,
q < 0

}
,

R2,3 =

{
p = 1

2 ,
q ≥ q0

}
, R2,4 =

{
0 < p < 1

2 ,
q ≥ q̂(p), q > 0

}
, R2,5 =

{
13
27 < p ≤ 19

39 ,
q = 10p− 8

3

}
,

R2,6 =

{
p < 0,

10p− 8
3 ≤ q < 0

}
, R3,1 =

{
p > 1

2 ,
q > 10p− 8

3

}
, R3,2 =

{
p = 1

2 ,
7
3 ≤ q < q0

}
,

R3,3 =

{
0 < p < 1

2 ,
q < min{10p− 8

3 , 0}

}
, R4,1 =

{
0 < p < 1

2 ,
0 < q < 10p− 8

3

}
,

R4,2 =

{
19
39 < p < 1

2 ,
q = 10p− 8

3

}
, R4,3 =

{
p < 0,

q < 10p− 8
3

}
,

where q0 = 2.39904 · · · is the unique zero point of ϱ(q) = q+2ω− 2ωq+1 on ( 73 ,
5
2 ),

since ϱ′(q) = 1 − 2ωq+1 lnω < 0 for q ∈ ( 73 ,
5
2 ), and ϱ(2.399039) = 4.50078 × 10−7

and ϱ(2.399041) = −2.69471 × 10−7 by numerical experiments. Moreover, it can
be easily seen that

R 1
2
= R1,3 ∪R2,2 ∪R2,3 ∪R3,2, R+

1
2

= R1,4 ∪R2,1 ∪R3,1,

R−
1
2

= R1,1 ∪R1,2 ∪R2,4 ∪R2,5 ∪R2,6 ∪R3,3 ∪R4,1 ∪R4,2 ∪R4,3,

which gives a complete division of R 1
2
,R+

1
2

and R−
1
2

.

Let us define R1 =
⋃4

j=1 R1,j , R2 =
⋃6

j=1 R2,j , R3 =
⋃3

j=1 R3,j and R4 =⋃3
j=1 R4,j , more precisely, which are given by (see Figure 2)

R1 =

{
(p, q)

∣∣∣∣ p < 0
q > 0

or
0 < p < 4

15
10p− 8

3 ≤ q < 0
or

p ≥ 1
2

0 < q ≤ 10p− 8
3

}
,

R2 =

{
(p, q)

∣∣∣∣ p ≥ 1
2

q < 0
or

p = 1
2

q ≥ q0
or

0 < p < 1
2

q ≥ q̂(p), q > 0
or

13
27 < p ≤ 19

39
q = 10p− 8

3

or
p < 0

10p− 8
3 ≤ q < 0

}
,

R3 =

{
(p, q)

∣∣∣∣ p > 1
2

q > 10p− 8
3

or
p = 1

2
7
3 < q < q0

or
0 < p < 1

2
q < min{10p− 8

3 , 0}

}
,

R4 =

{
(p, q)

∣∣∣∣ 4
15 < p < 1

2
0 < q < 10p− 8

3

or
19
39 < p < 1

2
q = 10p− 8

3

or
p < 0

q < 10p− 8
3

}
.

For the sake of convenience, we denote by R =
⋃4

j=1 Rj and the region of (p, q) in
Remark 10 by

R0 =
{
(p, q)

∣∣∣ 13
27 < p < 1

2 , 10p− 8
3 < q < p+ 2−

√
3(1− 2p)

}
.

Apparently, R2
0 = R∪R0. In the sequel, we mainly focus on the parameters

(p, q) ∈ R.
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Figure 1: The sign of ξp,q.
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Figure 2: Visualized regions of Rj .

Theorem 11. Let (p, q) ∈ R and define the function x 7→ Fp,q(x) on (0, 1) by

Fp,q(x) =
1− (x/ arcslx)q

1− (1− x4)p

Then we have the following statements conclusions:

(1) Fp,q is strictly increasing on (0, 1) if and only if (p, q) ∈ R1.

(2) Fp,q is strictly decreasing on (0, 1) if (p, q) ∈ R2.

(3) If (p, q) ∈ R3, then there exists x1 = x1(p, q) ∈ (0, 1) such that Fp,q is strictly
decreasing on (0, x1) and strictly increasing on (x1, 1).

(4) If (p, q) ∈ R4, then there exists x2 = x2(p, q) ∈ (0, 1) such that Fp,q is strictly
increasing on (0, x2) and strictly decreasing on (x2, 1).

Proof. Let f1(x) = 1− (x/ arcslx)q and f2(x) = 1− (1−x4)p. Then it is clear that
Fp,q(x) = f1(x)/f2(x) and f1(0

+) = f2(0) = 0.

Differentiating f1(x) and f2(x) leads to

f ′
1(x)

f ′
2(x)

=
q

4p

( x

arcslx

)q−1 x−
√
1− x4 arcslx

x3(1− x4)p−1/2 arcsl2 x
,(18) [

f ′
1(x)

f ′
2(x)

]′
=

q

4px5(1− x4)p

( x

arcslx

)q+2 [
4pφ2(x)− φ1(x)− qφ3(x)

]
(19)

≡ q

4px5(1− x4)p

( x

arcslx

)q+2

Φp,q(x),

where φ1(x), φ2(x) and φ3(x) are defined as in Lemma 7.
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By Lemma 7, it follows that

Φp,q(x) =4p

∞∑
n=2

2(n− 1)(4n+ 1)( 34 )n

(2n− 1)(4n− 1)( 54 )n
x4n −

∞∑
n=2

16n(n− 1)( 34 )n

(2n+ 1)(4n− 1)( 54 )n
x4n(20)

− q

∞∑
n=2

4(n− 1)(4n+ 1)( 34 )n

(4n2 − 1)(4n− 1)( 54 )n
x4n

=

∞∑
n=2

4(n− 1)ξp,q(n)

(4n2 − 1)(4n− 1)

( 34 )n

( 54 )n
x4n,

where ξp,q(x) is defined in Lemma 9.

By (7), (11) and (18), it is observed that

Hf1,f2(0
+) = lim

x→0+

[
f ′
1(x)

f ′
2(x)

f2(x)− f1(x)

]
= lim

x→0+

[
q(x−

√
1− x4 arcslx)

4px5
· f2(x)

](21)

= lim
x→0+

q arcslx

10px
√
1− x4

· lim
x→0+

f2(x) = 0,

Hf1,f2(1
−) = lim

x→1−

[
f ′
1(x)

f ′
2(x)

f2(x)− f1(x)

]
=


∞, p > 1

2 ,
ϱ(q)

2ωq+1 , p = 1
2 ,

1
ωq − 1, p < 1

2 .

(22)

To obtain the monotonicity of Fp,q, it suffices to verify the sign of
[
f ′
1(x)

f ′
2(x)

]′
.

It follows easily from (19) that

(23) sgn

{[
f ′
1(x)

f ′
2(x)

]′}
= sgn(pq) · sgn

[
Φp,q(x)

]
.

We divide into four cases to complete the proof.

Case I (p, q) ∈ R1.

� If p < 0 and q > 0 or 0 < p < 4/15 and 10p − 8/3 ≤ q < 0, then it is
apparent that q ≥ max{0, 10p−8/3} ≥ q̂(p). This together with Lemma
9(3) gives ξp,q(n) ≤ 0 for n ≥ 2. According to this with (20), it follows
from pq < 0 and (23) that f ′

1(x)/f
′
2(x) is strictly increasing on (0, 1) and

so is f1(x)/f2(x) by Proposition 1.

� If p ≥ 1/2 and 0 < q ≤ 10p− 8/3, equivalently, p = 1/2 and 0 < q ≤ 7/3
or p > 1/2 and 0 < q ≤ 10p− 8/3, then it follows from Lemma 9(1),(2)
that ξp,q(n) ≥ 0 for n ≥ 2. Combining this with (20), the condition
pq > 0, (23) and Proposition 1 lead to the conclusion that f1(x)/f2(x)
is strictly increasing on (0, 1).
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Case II (p, q) ∈ R2.

� If p ≥ 1/2 and q < 0, then q ≤ 7/3 ≤ 10p − 8/3, and it follows from
Lemma 9(1) and (2) that ξp,q(n) ≥ 0 for n ≥ 2. Due to pq < 0, by (20)
and (23), we conclude that f ′

1(x)/f
′
2(x) is strictly decreasing on (0, 1)

and so is f1(x)/f2(x) by Proposition 1.

� If 0 < p < 1/2 and q ≥ q̂(p), q > 0 or p < 0 and 10p − 8/3 ≤ q < 0,
then in either case, by the expression of q̂(p), it can be easily seen that
p < 1/2 and q ≥ q̂(p). This, by Lemma 9(3), implies that ξp,q(n) ≤ 0
for n ≥ 2. According to this, it follows from pq > 0, (20), (23) and
Proposition 1 that f1(x)/f2(x) is strictly decreasing on (0, 1).

� If 13/27 < p ≤ 19/39 and q = 10p−8/3, then we clearly see from Lemma
9(3) that ξp,q(n) ≤ 0 for n ≥ 2, which in conjunction with pq > 0, (20),
(23) and Proposition 1 that f1(x)/f2(x) is strictly decreasing on (0, 1).

� In the case of p = 1/2 and q ≥ q0 ≈ 2.39904, we divide into two subcases.

◦ p = 1/2 and q ≥ 5/2. In this case, Lemma 9(1) and (20), (23)
together with pq > 0 and Proposition 1 lead to the conclusion that
f1(x)/f2(x) is strictly decreasing on (0, 1).

◦ p = 1/2 and q0 ≤ q < 5/2. By Lemma 9(1), it follows that there
exists n0 ≥ 2 such that ξp,q(n) < 0 for 2 ≤ n ≤ n0 and ξp,q(n) > 0
for n ≥ n0. This together with (20) implies that Φ0(x) is an NP-
type power series. Hence, by Proposition 3 and (23), f ′

1(x)/f
′
2(x) is

strictly decreasing on (0, 1) if Φ0(1
−) ≤ 0 or there exists δ0 ∈ (0, 1)

such that f ′
1(x)/f

′
2(x) is strictly decreasing on (0, δ0) and strictly

increasing on (δ0, 1) if Φ0(1
−) > 0. So is H′

f1,f2(x) by (9) and
f2(x) > 0. In either case, we obtain
(24)

Hf1,f2(x) < max
{
Hf1,f2(0

+),Hf1,f2(1
−)

}
= max

q0≤q<5/2

{
0,

ϱ(q)

2ωq+1

}
= 0

for x ∈ (0, 1) by (21) and (22), where the last equal follows from
ϱ(q) ≤ 0 for q0 ≤ q < 5/2 due to the monotonicity of ϱ(q). Hence
f1(x)/f2(x) is strictly decreasing on (0, 1) following from (8), (24)
and f ′

2(x) > 0.

Case III (p, q) ∈ R3.

� If p > 1/2 and q > 10p−8/3 or p = 1/2 and 7/3 < q < q0, then it follows
from Lemma 9(1)(2) that there exists n1 ≥ 2 such that ξp,q(n) < 0 for
2 ≤ n ≤ n1 and ξp,q(n) > 0 for n ≥ n1. Moreover, by Lemma 7, we
obtain

Φp,q(1
−) = lim

x→1−

[
4pφ2(x)− φ1(x)− qφ3(x)

]
(25)

= 4(1− p)ω2 − 1− q + 2(2p− 1) lim
x→1−

arcslx

x
√
1− x4

.
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This gives Φp,q(1
−) = ∞ if p > 1/2 or Φp,q(1

−) = 2ω2 − 1 − q >
2ω2 − 1 − q0 > 0.03 if p = 1/2 and 7/3 < q < q0. According to this
with the sign of ξp,q(n), Proposition 3 and (23) together with pq > 0
and f2(x) > 0 make us to know that there exists δ1 ∈ (0, 1) such that
Hf1,f2(x) is strictly decreasing on (0, δ1) and strictly increasing on (δ1, 1).
So is f1(x)/f2(x) due to (21) and (22) together with (8) and f ′

2(x) > 0.

� If 0 < p < 1/2 and q < min{10p − 8/3, 0}, then by (25) we clearly see
that Φp,q(1

−) = −∞. This together with pq < 0, Proposition 3 and
Lemma 9(3) implies that there exists δ2 ∈ (0, 1) such that [f ′

1(x)/f
′
2(x)]

′

is strictly decreasing on (0, δ2) and strictly increasing on (δ2, 1). So is
Hf1,f2(x) by (9) and f2(x) > 0. In this case, it follows from (21) and
(22) that Hf1,f2(0

+) = 0 and Hf1,f2(1
−) = 1/ωq − 1 > 0. According

to this with (8), f ′
2(x) > 0 and the piecewise monotonicity of Hf1,f2(x),

we conclude that the exists x1 ∈ (0, 1) such that f1(x)/f2(x) is strictly
decreasing on (0, x1) and strictly increasing on (x1, 1).

Case IV (p, q) ∈ R4.
In this case, it follows from (25) and Lemma 9(3) that there exists δ3 ∈ (0, 1)
such that Φp,q(x) > 0 for x ∈ (0, δ3) and Φp,q(x) < 0 for x ∈ (δ3, 1). This
together with pq > 0 and (23) implies that (f ′

1/f
′
2)

′ is strictly increasing on
(0, δ3) and strictly decreasing on (δ3, 1).

� If 4/15 < p < 1/2 and 0 < q < 10p − 8/3 or 19/39 < p < 1/2 and
q = 10p − 8/3, then due to f2(x) > 0 and (9), Hf1,f2(x) has the same
piecewise monotonicity property of (f ′

1/f
′
2)

′. According to this with
(21) and (22), it can be seen that there exists x2 ∈ (0, 1) such that
Hf1,f2(x) > 0 for x ∈ (0, x2) and Hf1,f2(x) < 0 for x ∈ (x2, 1). This
proves Theorem 11(4) by (8) and f ′

2(x) > 0.

� If p < 0 and q < 10p− 8/3, then it follows from (9) and f2(x) < 0 that
Hf1,f2(x) has the opposite piecewise monotonicity property of (f ′

1/f
′
2)

′.
At this point, Hf1,f2(1

−) > 0 by (22). This together with (8), (21)
and f ′

2(x) < 0 shows that there exists x2 ∈ (0, 1) that f1/f2 is strictly
increasing on (0, x2) and strictly decreasing on (x2, 1).

To obtain the necessity of Theorem 11(1), by the above analysis, it suffices to
show that Fp,q is not strictly increasing on (0, 1) when (p, q) ∈ R0. For (p, q) ∈
R0, it is easy to see that ξp,q(2) = 3(30p− 3q − 8) < 0, which in conjunction
with (20), (23) and pq > 0 implies that there exists a sufficiently small ε ∈
(0, 1) such that f ′

1(x)/f
′
2(x) is strictly decreasing on (0, ε). Combining this

with f1(0
+) = f2(0) = 0, Proposition 1 enables us to know that Fp,q is strictly

decreasing on (0, ε).

Before stating the main result, we need to divide R into several new regions.
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Let us define the function q 7→ ι(q) on (−∞,∞) by

ι(q) =
qωq

10(ωq − 1)
, q ̸= 0 and ι(0) =

1

10 logω
.

By Proposition 1, it is easy to see that ι(q) is continuous at the origin and strictly
increasing from (−∞,∞) onto (0,∞). Moreover, for p > 0,

(26)
q

10p
−
(
1− 1

ωq

)
=

(ωq − 1)[ι(q)− p]

pωq

{
≥ 0, if q[ι(q)− p] ≥ 0,

≤ 0, if q[ι(q)− p] ≤ 0.

For later use, the symbol A± stands for the intersection of A and {(p, q)| p >
0, q[ι(q)− p] ≥ (≤)0}. Now we are able to give the following regions.

� The case pq > 0:

D1 = R1,3 ∪R1,4 ∪R−
4,1 ∪R−

4,2, D2 = R2,6 ∪R4,3, D3 = R3,1 ∪R3,2,

D4 = R2,3 ∪R2,4 ∪R2,5 ∪R+
4,1 ∪R+

4,2,

E1 = R1,3 ∪R1,4 ∪R−
3,1 ∪R−

3,2, E2 = R2,3 ∪R2,4 ∪R2,5 ∪R2,6 ∪R+
3,1 ∪R+

3,2,

E3 = R4 .

� The case pq < 0:

D̂1 = R1,2 ∪R−
3,3, D̂2 = R1,1, D̂3 = R2,1 ∪R2,2 ∪R+

3,3,

Ê1 = R1,1 ∪R1,2, Ê2 = R3,3, Ê3 = R2,1 ∪R2,2 .

Observe that R =
(⋃4

j=1 Dj

)
∪
(⋃3

j=1 D̂j

)
=

(⋃3
j=1 Ej

)
∪
(⋃3

j=1 Êj

)
, we refer to

see Figures 3 and 4 for clarity.

We are now in a position to prove the main result.

Theorem 12. Let mF = min
x∈(0,1)

{Fp,q(x)} and MF = max
x∈(0,1)

{Fp,q(x)}. Then for

any fixed (p, q) ∈ R, the double inequality

(27) Hα(x; p, q) ≤
arcslx

x
≤ Hβ(x; p, q)

holds for all 0 < |x| < 1 with the equal only for certain point x if and only if

α ≤ α(p, q) and β ≥ β(p, q) for pq > 0,

α ≥ α̂(p, q) and β ≤ β̂(p, q) for pq < 0,
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Figure 3: The regions Dj and D̂j .
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Figure 4: The regions Ej and Êj .

where

α(p, q) =


q

10p , (p, q) ∈ D1,

0, (p, q) ∈ D2,

mF , (p, q) ∈ D3,

1− 1
ωq , (p, q) ∈ D4,

β(p, q) =


1− 1

ωq , (p, q) ∈ E1,
q

10p , (p, q) ∈ E2,

MF , (p, q) ∈ E3,

α̂(p, q) =


1− 1

ωq , (p, q) ∈ D̂1,

0, (p, q) ∈ D̂2,
q

10p , (p, q) ∈ D̂3,

β̂(p, q) =


q

10p , (p, q) ∈ Ê1,

mF , (p, q) ∈ Ê2,

1− 1
ωq , (p, q) ∈ Ê3.

In particular, if lim
(p,q)→(0,0)

(p/q) = λ ̸= 0, the double inequality

(28) Hα(x;λ) <
arcslx

x
< Hβ(x;λ)

holds for all 0 < |x| < 1 if and only if{
α ≤ 0 and β ≥ 1

10λ , λ > 0,

α ≥ 0 and β ≤ 1
10λ , λ < 0.

Proof. Since the functions arcslx and x are odd on (−1, 1), we may assume that
x ∈ (0, 1). For (p, q) ∈ R2

0, it is a matter of simple transformation to verify that
the inequality (27) is equivalent to

α ≤ Fp,q(x) ≤ β, if pq > 0,(29)

β ≤ Fp,q(x) ≤ α, if pq < 0,(30)
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Table 1: Description of the range of Fp,q for (p, q) ∈ R
(a) The case of pq > 0

Regions The range of Fp,q

R1,3

(
q

10p , 1−
1
ωq

)
R1,4

(
q

10p , 1−
1
ωq

)
R2,3

(
1− 1

ωq ,
q

10p

)
R2,4

(
1− 1

ωq ,
q

10p

)
R2,5

(
1− 1

ωq ,
q

10p

)
R2,6

(
0, q

10p

)
R3,1

R+
3,1

[
mF ,

q
10p

)
R−

3,1

[
mF , 1− 1

ωq

)
R3,2

R+
3,2

[
mF ,

q
10p

)
R−

3,2

[
mF , 1− 1

ωq

)
R4,1

R+
4,1

(
1− 1

ωq ,MF

]
R−

4,1

(
q

10p ,MF

]
R4,2

R+
4,2

(
1− 1

ωq ,MF

]
R−

4,2

(
q

10p ,MF

]
R4,3

(
0,MF

]

(b) The case of pq < 0

Regions The range of Fp,q

R1,1

(
q

10p , 0
)

R1,2

(
q

10p , 1−
1
ωq

)
R2,1

(
1− 1

ωq ,
q

10p

)
R2,2

(
1− 1

ωq ,
q

10p

)
R3,3

R+
3,3

[
mF ,

q
10p

)
R−

3,3

[
mF , 1− 1

ωq

)

where Fp,q is defined as in Theorem 11. So the inequalities (29) and (30) hold for
all x ∈ (0, 1) if and only if

α ≤ α(p, q) = inf
x∈(0,1)

{Fp,q(x)} and β ≥ β(p, q) = sup
x∈(0,1)

{Fp,q(x)} for pq > 0,

α ≥ α̂(p, q) = sup
x∈(0,1)

{Fp,q(x)} and β ≤ β̂(p, q) = inf
x∈(0,1)

{Fp,q(x)} for pq < 0.

Note that, by (18),

(31) Fp,q(0
+) = lim

x→0+

f ′
1(x)

f ′
2(x)

=
q

10p
, Fp,q(1

−) =

{
0, p < 0,

1− 1
ωq , p > 0.

Moreover, it has been proved in Theorem 11 the monotonicity of Fp,q(x) on (0, 1) for
(p, q) ∈ R. This together with (26) and (31) gives the range of Fp,q for each (p, q) ∈
R, which is illustrated in Table 1. Hence, the specific expression of α(p, q), β(p, q),

α̂(p, q) and β̂(p, q) can be obtained from Table 1.

In particular, in the case of (p, q) = (0, 0), if lim
(p,q)→(0,0)

(q/p) = λ ̸= 0, it is

considered to approximate (arcslx)/x by Hα(x;λ), which is the limiting expression
of Hα(x; p, q). It can be easily verified that the double inequality (28) is equivalent
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to

(32) λα <
log(x/ arcslx)

log(1− x4)
< λβ ⇐⇒

{
α < log(x/ arcsl x)

λ log(1−x4) < β, λ > 0,

β < log(x/ arcsl x)
λ log(1−x4) < α, λ < 0

for all x ∈ (0, 1). So the sufficient and necessary conditions which make the in-
equality (28) hold can be easily obtained from (32), the sign of λ and Lemma
8.

Remark 13. In Theorem 12, the best constants α(p, q) (resp. β(p, q), β̂(p, q)) is

not computable simply if (p, q) ∈ D3 (resp. E3, Ê2). In this case, Theorem 11(3)
(resp. (4)) enables us to know that Fp,q is strictly convex (or concave) on (0, 1), that
is, F ′

p,q is strictly increasing (or decreasing) on (0, 1), one can find an approximation
of the extreme point with arbitrary precision by numerical experiments.

4. APPLICATIONS

In this section, Theorem 12 will be applied to obtain some new inequalities
involving the arc lemniscate sine function.

Recall that a real-valued function A(x) is said to be an n-order approximation
for f(x) as x → 0+ if

lim
x→0+

|f(x)−A(x)|
xn

= c > 0.

Moreover, if the inequality f(x) ≥ (≤)A(x) holds for all x ∈ (0, 1), then A(x) is
called an n-order lower (upper) approximation for f(x). It is well known that the
order n is one of the important measure of accuracy of the given approximation
A(x) for f(x), see [2, 25].

As x → 0+, by Taylor series, we obtain

arcslx

x
−Hα(x; p, q) =

(
1

10
− αp

q

)
x4 +

12αpq(p− 1) + q2 − 12α2p2(q + 1)

24q2
x8

+

[
5

208
− αp(p− 1)(p− 2)

6q
+

α2p2(p− 1)(q + 1)

2q2
− α3p3(q + 1)(2q + 1)

6q3

]
x12 + o(x12).

We can find the parameters α, p and q such that all the coefficient for x4, x8 and
x12 are zero, explicitly,

α =
43

95
, p =

19

39
, q =

86

39
.

It can be easily seen that q = 10p − 8/3 and so (19/39, 86/39) ∈ R2,5 ⊂ D4 ∩ E2.
By Theorem 12, we obtain the following corollary.
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Corollary 1. The inequality

H
1−ω− 86

39

(
x;

19

39
,
86

39

)
<

arcslx

x
< H 43

95

(
x;

19

39
,
86

39

)
holds for all 0 < |x| < 1, where H 43

95

(
x; 19

39 ,
86
39

)
is an 16-order upper approximation.

A special case of our interest is that (p, q) passing through the origin. As-
suming that q = kp with k ̸= 0, which is required not to intersect with R0. It is
observed that both of the points (13/27, 58/27) and (1/2, 5/2) belong to R2 and
also the boundary points of R0. If two lines q = k1p and q = k2p pass through
these two points, then it can be easily obtained that k1 = 58

13 and k2 = 5. That is
to say, {(p, q)| q = kp, k ̸= 0} ∩ R0 = ∅ if k ∈ (−∞, 0) ∪ (0, 58

13 ] ∪ [5,∞).

As a consequence of Theorem 12, we pose the following propositions.

Proposition 14. (1) For k ∈ (−∞, 58
13 ] with k ̸= 0, the inequality

(33) Hk/10(x; p1, kp1) <
arcslx

x
< Hk/10(x; p2, kp2)

holds for all 0 < |x| < 1 with the best possible constants p1 = σ and p2 = τ ,
where

σ := σ(k) =
log [10/(10− k)]

k logω
and τ := τ(k) =

8

3(10− k)
.

(2) For k ∈ [5, 10), the inequality (33) holds for all 0 < |x| < 1 with the best
possible constants p1 = τ and p2 = σ.

Proof. Inequality (33) can be directly derived from Theorem 11 if we can show that
(σ, kσ) ∈ D1 and (τ, kτ) ∈ E2, if k ∈ (0, 58

13 ],

(τ, kτ) ∈ D1 and (σ, kσ) ∈ E2, if k ∈ [5, 10),

(σ, kσ) ∈ D̂3 and (τ, kτ) ∈ Ê1, if k ∈ (−∞, 0).

Firstly, it can be easily verified, by Proposition 1, that k 7→ σ(k) and k 7→ τ(k)/σ(k)
is strictly increasing on (−∞, 10). Secondly, by the expression of σ and τ , it follows
from ωkσ = 10/(10−k) that ι(kσ) = (kσωkσ)/[10(ωkσ−1)] = σ and kτ = 10τ−8/3.
That is to say, (σ, kσ) satisfies the curve p = ι(q) and (τ, kτ) is on the straight line
q = 10p− 8/3.

� k ∈ (0, 58
13 ].

In this case, σ > σ(0+) = 1/[10 logω] > 0 and σ ≤ σ( 5813 ) = 0.489 · · · < 1/2.
Moreover,
(34)

8

3(10− k)σ
=

τ(k)

σ(k)
≤

τ( 5813 )

σ( 5813 )
= 0.984559 · · · < 1 ⇐⇒ 0 < kσ < 10σ − 8

3
.



168 Tie-Hong Zhao and Miao-Kun Wang

This gives (σ, kσ) ∈ R4,1 and So (σ, kσ) ∈ R−
4,1 ⊂ D1. On the other hand,

4

15
= τ(0) < τ < τ( 5813 ) =

13

27
and kτ = 10τ − 8

3
= q̂(τ).

That is to say, (τ, kτ) ∈ R2,4 ⊂ E2.

� k ∈ [5, 10).
Due to τ > τ(5) = 8/15 > 1/2, (τ, kτ) ∈ R1,4 ⊂ D1. On the other hand,
σ ≥ σ(5) = 0.5119 · · · > 1/2 and

8

3(10− k)σ
=

τ(k)

σ(k)
≥ τ(5)

σ(5)
= 1.0418 · · · > 1 ⇐⇒ kσ > 10σ − 8

3
,

which gives (σ, kσ) ∈ R3,1 and (σ, kσ) ∈ R+
3,1 ∈ E2.

� k ∈ (−∞, 0).
In this case, we obtain 0 = σ(−∞) < σ < σ(0−) = 1/(10 logω) = 0.3692 · · · <
1/2. As in (34), it follows from τ(0)/σ(0) < 1 that kσ < 10σ − 8/3, which

gives (σ, kσ) ∈ R3,3 and so (σ, kσ) ∈ R+
3,3 ⊂ D̂3. On the other hand, (τ, kτ) ∈

R1,2 ⊂ Ê1 follows from 0 < τ < τ(0) = 4/15.

In the following, we shall prove that the constants are the sharp for each case.
We only give the proof for the case k ∈ (0, 58

13 ] and others are similar.

For k ∈ (0, 58
13 ], as in (34), one has τ < σ. If p ∈ (τ, σ), namely,

4

15
<

8

3(10− k)
< p <

log [10/(10− k)]

k logω
<

1

2
,

which can be simplified to

0 < kp < 10p− 8

3
and 0 < p <

kpωkp

10(ωkp − 1)
= ι(kp),

That is to say, (p, kp) ∈ R+
4,1 ⊂ D4 ∩ E3. By Theorem 12, it follows that

H1−ω−kp(x; p, kp) <
arcslx

x
< HMF

(x; p, kp)

holds for all 0 < |x| < 1 with the optimal parameters 1 − ω−kp and MF . For
(p, kp) ∈ R+

4,1, it follows from Theorem 11(4) and (26) that 1 − ω−kp < k/10
and MF > k/10. Due to the monotonicity of α 7→ Hα(x; p, kp), the optimality of
parameters enables us to know that there exist two numbers x̂1, x̂2 ∈ (0, 1) such
that

Hk/10(x̂1; p, kp) >
arcsl x̂1

x̂1
and Hk/10(x̂2; p, kp) <

arcsl x̂2

x̂2
.

It is observed that p 7→ Hk/10(x; p, kp) is strictly decreasing (increasing) on (−∞,∞)
for k > (<)0. This gives the sharpness of τ and σ.
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By applying Proposition 14, we give the following corollaries.

Corollary 2. The inequality

H29/65

(
x; p3, 58p3/13

)
<

arcslx

x
< H29/65

(
x; p4, 58p4/13

)
holds for all 0 < |x| < 1 if and only if p3 ≥ [13 log(65/36)]/(58 logω) = 0.48903 · · ·
and p4 ≤ 13/27 = 0.48148 · · · .

Corollary 3. The inequality

H1/2

(
x; p5, 5p5

)
<

arcslx

x
< H1/2

(
x; p6, 5p6

)
holds for all 0 < |x| < 1 if and only if p5 ≥ 8/15 = 0.5333 · · · and p6 ≤
(log 2)/(5 logω) = 0.5119 · · · .

Remark 15. By numerical experiments, we can show that k 7→ Hk/10

(
x;σ(k); kσ(k)

)
is strictly increasing on (−∞, 10) and k 7→ Hk/10

(
x; τ(k); kτ(k)

)
is strictly decreas-

ing on (−∞, 10). Moreover, p 7→ Hk/10(x; p, kp) is strictly decreasing on (−∞,∞)
for k > 0.

Based on these monotonicity properties, it follows from Corollaries 2 and 3
that

H1−1/ω(x;
1
4 , 1) < H1−1/ω(x;

1
10(1−1/ω) , 1) < H29/65

(
x;σ( 5813 ),

58
13σ(

58
13 )

)
<

arcslx

x
< H29/65

(
x; τ( 5813 ),

58
13τ(

58
13 )

)
< H2/5(x;

4
9 ,

16
9 ) < H2/5(x;

1
4 , 1),

H1/5(x;
1
2 , 1) < H1/5

(
x;σ(2), 2σ(2)

)
< H29/65

(
x;σ( 5813 ),

58
13σ(

58
13 )

)
(35)

<
arcslx

x
< H1/2

(
x;σ(5), 5σ(5)

)
< H1−1/ω(x;

1
2 ; 1),

H2/5(x;
1
2 , 2) < H2/5

(
x;σ(4), 4σ(4)

)
< H29/65

(
x;σ( 5813 ),

58
13σ(

58
13 )

)
(36)

<
arcslx

x
< H1/2

(
x;σ(5), 5σ(5)

)
< H1−1/ω2(x; 1

2 ; 2),

where the last inequal signs in (35) and (36) follow from numerical experiments.

Hence, Corollaries 2 and 3 give the great improvements for inequalities (3)-
(5).

Remark 16. As x → 0+, by Taylor series, we have

arcslx

x
−H29/65

(
x;

13

27
,
58

27

)
= − 2x12

78975
+ o(x16),

arcslx

x
−H1/2

(
x;

8

15
,
8

3

)
=

x12

4875
+ o(x16),

which together with Corollaries 2 and 3 implies that H29/65

(
x; 13

27 ,
58
27

)
and

H1/2

(
x; 8

15 ,
8
3

)
give the 12-order upper and lower bounds for (arcslx)/x, respec-

tively.
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