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ON THE RADEMACHER PERTURBED GEOMETRIC

DISTRIBUTION

Maher Kachour and Christophe Chesneau∗

This paper introduces a new discrete distribution that depends on two param-

eters. It can be described as a perturbed version of the standard geometric

distribution by adding a ”random noise” following the Rademacher distribu-

tion. Depending on the values of its parameters, this new distribution can

be unimodal or bimodal, as well as underdispersed or overdispersed. After

reviewing its main properties, the problem of parameter estimation is exam-

ined and an application to a practical data set is given.

1. INTRODUCTION

Discrete models are very important in handling count data encountered in
several theoretical and practical fields. In particular, earthquakes, traffic accidents,
counts of landslides, and the number of people dying from the disease can be mod-
eled by discrete (probability) distributions. Further, the reliability of a switching
device is a function of the number of times the switch is operated, or the reliability
of a computer is a function of the number of times the computer has broken down.
According to [8], almost all observed values are actually discrete because they are
measured to only a finite number of decimal places and cannot really constitute all
points in a continuum.

Many research papers have been published on the study and applications
of distributions with support included in N = {0, 1, 2, 3, 4, . . .}. A large number
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of these distributions can be found in [19] and [12]. The geometric distribution
(originally interpreted as the number of independent and identical trials to get the
first success, i.e., its support is N\{0} = {1, 2, 3, 4, . . .}) and the second-type geo-
metric distribution (originally interpreted as the number of failures of independent
and identical trials before getting the first success, i.e., its support is N) are well-
known discrete distributions. They have been studied by many researchers due to
their empirical applications. In recent decades, there has been an increased inter-
est in constructing new flexible distributions defined on N. In particular, many
generalizations of the geometric distribution were attempted via different meth-
ods. A brief state of the art on this topic is given below. A generalization of
the right-truncated geometric distribution was considered in [24]. The author in
[14] introduced another generalization of the geometric distribution by discretiz-
ing the generalized exponential distribution, originally proposed in [26]. A new
generalization of the geometric distribution was examined in [9] by employing the
techniques in [28]. A new generalization of the geometric distribution based on the
quadratic transmutation techniques in [34] was introduced in [7]. A generalized
geometric distribution using a discrete analog of the weighted exponential distri-
bution established in [15] was studied in [6]. The authors in [30] used the skewing
mechanism in [4] for continuous distributions to derive a new generalization of the
geometric distribution. A new parametric extension of the geometric distribution
using also Azzalini’s method was investigated in [10]. The authors in [2] applied
the transmuted record-type geometric method to construct an extended form of the
geometric distribution. A sequence of independent and identical trinomial experi-
ments, and a typical stopping rule to generate a generalized geometric distribution
were examined in [32].

In parallel to these contributions, many recent research papers have been
interested in an ”inflated” version of the geometric distribution. Indeed, the geo-
metric and the second-type geometric distributions may be inadequate for dealing
with overdispersed count data. This case occurs for instance in the abundance
of zero counts in the data. To overcome this over-dispersion problem, the zero-
inflated geometric (ZIG) distribution was introduced (for details, see [19], [33] and
the references therein). Explicitly, for a random variable X following the ZIG (p, π)
distribution, its probability mass function (pmf) is specified by

P (X = k) =

{
π + p (1− π) if k = 0,

(1− π) (1− p)
k
p if k ≥ 1,

where p is probability of success in the geometric distribution and π is the mixture

additional weight, which belongs to
(
− p

1−p , 1
)
. Negative values of π, i.e., when

π ∈
(
− p

1−p , 0
)
, have a natural interpretation in terms of zero-deflation, relative

to a second-type geometric model. Correspondingly, π ∈ (0, 1) can be regarded
as zero inflation (see [19]) Inspired by the ZIG distribution described above, [20]
introduced the generalized inflated geometric (GIG) distribution, which permits
inflation and deflation at several specific values. Indeed, the inflated geometric
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distribution models were recently considered and studied due to their empirical
needs and applications. For example, the authors in [31] used an inflated geomet-
ric model to fit the total number of migrants in the household cohort (including
international migrants) of the rural areas of Comilla District, Bangladesh. Further-
more, the author in [3] proposed an extension of the geometric distribution zero-one
inflated to estimate the frequencies of the number of major derogatory reports in
the credit history of individual credit card applicants. More applications based on
these models are also presented in [35], [25], and [36].

For the purpose of this paper, the geometric distribution with parameter
p ∈ (0, 1), denoted by G (p), needs to be defined. For a random variable X following
the G (p) distribution, its pmf is given by

P (X = k) = p (1− p)
k−1

, k ∈ N\{0}.

Thus, we consider a ” − 1/ + 1” perturbed version of the G (p) distribution. The
considered perturbed scheme is as follows: Let X and Y be independent random
variables with X following the G (p) distribution and Y = 2U − 1, where U follows
the Bernoulli distribution with parameter α ∈ (0, 1). Indeed, in this case, one can
say that Y follows a Rademacher (α) distribution. Therefore, we have

Y (Ω) = {−1, 1}, with P (Y = 1) = 1− P (Y = −1) = α.

Thus, Y can model a moderate discrete noise with intensity modulated by α. Hence,
the version of X perturbed with an additional ”random noise” modeled by Y can
be defined as

(1) Z = X + Y.

Remark 1. Data perturbation is a popular technique, for example, in the privacy-
preserving data mining field. The noise additive perturbation (used here to generate
our new geometric distribution) is one of the most basic methods for data pertur-
bation. This type of technique relies on the fact that data owners may not want to
equally protect all values in a record; thus, a column-based value distortion can be
applied to perturb some sensitive columns (see, e.g., [1], [13], and [11]).

Remark 2. Most of the inflated geometric distribution models proposed in the lit-
erature are based on the second-type geometric distribution, which already has N as
support. Our new distribution is founded on the standard geometric distribution,
which is defined on N\{0}. Thus, noise additive perturbation with −1 as mini-
mal modality (such as the Rademacher distribution used here) allows the standard
geometric perturbed distribution to obtain N as support.

The definition of the corresponding distribution is presented below.

Definition 1. Let Z be a random variable as defined by the random sum in Equa-
tion (1). According to this structure, we have Z (Ω) = N and the associated pmf
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can be described as follows:

P (Z = k) =


p (1− α) if k = 0,

p (1− α) (1− p) if k = 1,

p (1− p)
k−2

(
α+ (1− α) (1− p)

2
)

if k ≥ 2.

Thus, Z is said to follow the Rademacher perturbed geometric distribution with
parameters α and p, denoted by R-G (α, p).

Remark 3. At first glance, based on the expression of its pmf, it will be natural to
wonder if there is a link between our new distribution and the already existing in-
flated geometric distributions. Specifically, it is entirely appropriate to ask whether
the Rademacher perturbed geometric distribution represents a special case of the
GIG distribution. To address these questions, we must mention two important
elements:

� The GIG distribution is based on the second-type geometric distribution (which,
by definition, has N as support).

� One can consider the pmf of the GIG distribution as ”ad-hoc” constructed. In-
deed, to obtain an inflated\defleated structure at specific values (for example,
at zero in the ZIG distribution, see the pmf described above), an additional
weight is used to define the probability of these specific values (indeed, the
pmf of a considered specific value is a linear combination between the addi-
tional weight and the second-type geometric pmf of this value). The realization
probability of the other values is similar to that of the pmf of the second-type
geometric distribution (for the same values) with a multiplicative standard-
ization constant, which depends on the additional weights used for the specific
values considered.

Indeed, the noise additive perturbation technique (used to define our new distribu-
tion) offers a pmf structure different from that presented above. Assume that W is
a second-type geometric random variable (i.e., W (Ω) = N), with p as a parameter
and E a random variable following the Bernoulli (π) distribution, where E and W
are independent. Thus, one can easily see that the pmf of W + E is not equal to
that of the ZIG distribution.

The pmf of the R-G (α, p) distribution is plotted in Figure 1 for some chosen
values of parameters. It reveals the following information:

� A clear geometric decrease from lag 2.

� Depending on parameter values, the R-G (α, p) distribution can zero deflate
or inflate (indeed, the pmf at 0 can be written as a bivariate function that
depends on p and α, i.e., P (Z = 0) = f (p, α) = p(1− α). This function will
increase with large values of p and weak values of α. However, P (Z = 0) will
decrease with large values of α).
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Figure 1: Plots of the pmf of the R-G (α, p) distribution for different parameter
value combinations.

� Depending on parameter values, the R-G (α, p) distribution can inflate twice.

The characteristics and flexibility of the distribution can be useful in many fields
of application. For example, the R-G (α, p) distribution can model complete female
fertility, which accounts for a relative excess of both zero and two children (see [27]
and [25]). Moreover, it can fit data from a dental epidemiological study. Explicitly,
the R-G (α, p) distribution can be used to model the DMFT index (which is a count
number standing for the number of decayed, missing, and filled teeth) measured on
children from a specific age, where data have a surplus amount of zero, one, or two
(see [5]).

The contents of the paper are arranged as follows: In Section 2, various
properties of this distribution, including the mode, the failure rate function and
the probability generating function (pgf), are studied. In Section 3, the method of
moments and the method of maximum likelihood estimation are used for parameter
estimation. Also, a simulation study is carried out to study the performance of the
obtained estimates. Application of this distribution in real-world data modeling is
illustrated in Section 4, and conclusions are presented in Section 5.

2. MAIN PROPERTIES

This section is devoted to the main theoretical properties of the R-G (α, p)
distribution. Hereafter, we consider a random variable Z that follows the R-G dis-
tribution.

2.1. Mode(s). First, let us investigate the mode of the R-G (α, p) distribution.
Recall that the mode associated with Z, denoted by Mode (Z), it is the value (or
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values) k∗ such that

P (Z = k∗) ≥ P (Z = k) , ∀k ∈ N.

On the other hand, one can see that

� P (Z = 2) ≥ P (Z = k) , ∀k ≥ 2,

� P (Z = 0) > P (Z = 1).

Therefore, we can conclude that 0 and 2 are the unique ”candidates” to be the
mode of Z. The precise result is described in the next proposition.

Proposition 1. Depending on the parameter values, we have

� Mode (Z) = 2, if α
1−α > p (2− p).

� Mode (Z) = 0, if α
1−α < p (2− p).

� Mode (Z) = {0, 2}, if α
1−α = p(2− p).

Proof. Let

∆ = P (Z = 2)− P (Z = 0) = p (α− (1− α) p (2− p)) .

Thus, we have

� ∆ > 0 if α
1−α > p (2− p).

� ∆ < 0 if α
1−α < p (2− p).

� ∆ = 0 if α
1−α = p(2− p).

This ends the proof.

Remark 4. This result is consistent with the construction of the distribution (see
Equation (1)). In fact, 1 is the mode of a geometric distribution, and the perturba-
tion resulting from the Rademacher distribution can explain why 0 and/or 2 are the
modes of the R-G (α, p) distribution. On the other hand, this result is interesting
because it justifies the use of this distribution to fit data with excess 0 and/or 2.

2.2. Cumulative distribution function. The following proposition determines
the cumulative distribution function of the R-G (α, p) distribution.

Proposition 2. Let FZ(a) = P (Z ≤ a) denote the cumulative distribution function
associated with Z. Thus, we have

FZ(a) =


0 if a < 0,

p (1− α) if 0 ≤ a < 1,

p (1− α) (2− p) if 1 ≤ a < 2,

p (1− α) (2− p) +
(
α+ (1− α) (1− p)2

) (
1− (1− p)⌊a⌋−1

)
if a ≥ 2,

where ⌊·⌋ is the floor function (which gives the greatest integer less than or equal
to the input real value).
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Proof.

� If 0 ≤ a < 1, then FZ(a) = P (Z = 0) = p (1− α).

� If 1 ≤ a < 2, then FZ(a) = P (Z = 0) + P (Z = 1) = p (1− α) (2− p).

� If a ≥ 2, by using the geometric series formula, we get

FZ(a) = FZ(1) +

⌊a⌋∑
k=2

P (Z = k)

= FZ(1) +
(
α+ (1− α) (1− p)

2
)p

⌊a⌋−2∑
j=0

(1− p)
j


= p (1− α) (2− p) +

(
α+ (1− α) (1− p)

2
)(

1− (1− p)
⌊a⌋−1

)
.

This ends the proof.

Remark 5. Let a ∈ N. Based on Proposition 2, one can easily define the corre-
sponding failure rate function as follows:

κZ(a) = P (Z = a | Z ≥ a) =
P (Z = a)

P (Z ≥ a)
=

P (Z = a)

1− FZ (a− 1)

=



p (1− α) if a = 0,
p (1− p) (1− α)

1− p (1− α)
if a = 1,

p (1− p)
a−2

(
α+ (1− α) (1− p)

2
)

1−
(
p (1− α) (2− p) +

(
α+ (1− α) (1− p)

2
)(

1− (1− p)
a−2

)) if a ≥ 2.

This function is plotted in Figure 2 for some chosen parameter values. It reveals
its increasing nature.

2.3. Moments. Moments play an important role in any statistical analysis.
They allow for the measurement of crucial features of a distribution, such as the
dispersion. Next, we provide the raw moments of the R-G (α, p) distribution. Let
n be a non-zero positive integer. The nth raw moment of Z can be expressed as
follows:

E (Zn) = E ((X + Y )
n
)

=

n∑
k=0

(
n

k

)
E
(
Xk

)
E
(
Y n−k

)
=

n∑
k=0

(
n

k

)
E
(
Xk

) (
α+ (−1)

n−k
(1− α)

)
.
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Figure 2: Plots of the failure rate function of the R-G (α, p) distribution for different
parameter value combinations.

In particular, we have

(2) E (Z) = (2α− 1) + E (X) = (2α− 1) +
1

p

and

E
(
Z2

)
= 1 + 2E (X) (2α− 1) + E

(
X2

)
= 1 + 2

1

p
(2α− 1) +

2− p

p2
.

Thus, we deduce that

V (Z) = E
(
Z2

)
− (E (Z))

2

=
1− p

p2
+ 4α (1− α) .

It also corresponds to V (Z) = V (X) + V (Y ).

Remark 6. The index of dispersion (ID) of Z is given by

ID =
V (Z)

E (Z)
=

1−p
p2 + 4α (1− α)

(2α− 1) + 1
p

.

Suppose that α = 1
2 . Thus, we obtain that ID = p+ 1−p

p > 1 (we can deduce that,

in this case, the distribution is overdispersed). Table 1 contains the ID associated
with the R-G (α, p) distribution for different value combinations of α and p.
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Table 1: ID associated with the R-G (α, p) distribution for different parameter
value combinations.

α ↓ p → 0.1 0.2 0.3 0.4 0.5

0.1 9.821739 4.847619 3.212281 2.417647 1.9666667

0.2 9.642553 4.690909 3.079675 2.310526 1.8857143

0.3 9.462500 4.530435 2.937879 2.185714 1.7750000

0.4 9.281633 4.366667 2.788652 2.047826 1.6444444

0.6 8.917647 4.030769 2.472956 1.744444 1.3454545

0.7 8.734615 3.859259 2.308333 1.582759 1.1833333

0.8 8.550943 3.685714 2.140113 1.416129 1.0153846

0.9 8.366667 3.510345 1.968817 1.245455 0.8428571

α ↓ p → 0.6 0.7 0.8 0.9

0.1 1.6974359 1.5467532 1.4944444 1.5539683

0.2 1.6416667 1.5113300 1.4653846 1.4937198

0.3 1.5403509 1.4119048 1.3558824 1.3548611

0.4 1.4121212 1.2797342 1.2119048 1.1891599

0.6 1.1095238 0.9654135 0.8775862 0.8263653

0.7 0.9440860 0.7941964 0.6984848 0.6375817

0.8 0.7725490 0.6173038 0.5148649 0.4461760

0.9 0.5963964 0.4362637 0.3280488 0.2529716

Hence, we can see that, for some sets of parameters, the ID value is strictly
less than one (which implies that, for these sets of parameters, the distribution is
underdispersed). Indeed, for a fixed p, when α approaches 1, the ID will decrease.
In particular, for sets of parameters where p > 1

2 and α > 1
2 , we observe that

ID < 1.

2.4. Incomplete moments. The incomplete moments find numerous applications
in lifetime models. They allow for the definition of important quantities, such as the
mean residual lifetime. Next, we provide expressions for the incomplete moments
of the R-G (α, p) distribution.

Proposition 3. Let m ≥ 2 and n be a non-zero positive integer. The nth incom-
plete moment of Z satisfies

E
(
Zn

1{Z≥m}
)
=

(
α+ (1− α) (1− p)

2
)

1− p
E
(
Xn

1{X≥⌈m⌉}
)
,

where ⌈·⌉ is the ceiling function (which gives the least integer that is greater than
or equal to the input real value).

Proof.
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Based on the definition of P (Z = k), we have

E
(
Zn

1{Z≥m}
)
=

+∞∑
k=⌈m⌉

knP (Z = k)

=

(
α+ (1− α) (1− p)

2
)

1− p

+∞∑
k=⌈m⌉

knp (1− p)
k−1

=

(
α+ (1− α) (1− p)

2
)

1− p
E
(
Xn

1{X≥⌈m⌉}
)
.

This ends the proof.

2.5. Probability generating function. Several interesting characteristics of a
distribution can be studied through its pgf. Next, we determine this function in
the context of the R-G (α, p) distribution.

Proposition 4. Let GZ(s) = E
(
sZ

)
denote the pgf associated with Z. Thus, we

have

(3) GZ(s) = p(1− α) (1 + s (1− p)) +
(
α+ (1− α) (1− p)

2
)(

ps2

1− (1− p) s

)
.

Proof. By using the geometric series formula, after some developments, we obtain

GZ(s) = E
(
sZ

)
=

+∞∑
k=0

skP (Z = k)

= P (Z = 0) + sP (Z = 1) +
(
α+ (1− α) (1− p)

2
)
s2p

+∞∑
k=2

(s (1− p))
k−2

= p(1− α) (1 + s (1− p)) +
(
α+ (1− α) (1− p)

2
)(

ps2

1− (1− p) s

)
.

This finishes the proof.

Remark 7. One can derive the characteristic function associated with Z by simply
replacing s with eit in the pgf from Equation (3). It thus takes the following form:

φZ(t) = E
(
eitZ

)
= p(1− α)

(
1 + eit (1− p)

)
+

(
α+ (1− α) (1− p)

2
)(

pe2it

1− (1− p) eit

)
.

2.6. Distribution of a sum. The sum of independent and identically distributed
(iid) random variables that follow the R-G (α, p) distribution has a clear stochastic
structure, as presented in the proposition below.
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Proposition 5. For any positive integer n, let Z1, . . . , Zn be iid random variables
that follow the R-G (α, p) distribution. Then the sum random variable has the
following stochastic representation:

n∑
i=1

Zi = V + 2W − n,

where V is a random variable that follows the negative binomial NB (n, p) distribu-
tion and W is a random variable that follows the binomial B (n, α) distribution.

Proof. By the definition of the R-G (α, p) distribution, for any i = 1, . . . , n, we
can write Zi = Xi + 2Ui − 1, where Xi is a random variable that follows the G (p)
distribution and Ui is a random variable that follows the Bernoulli distribution with
parameter α, all are independent with respect to the index i. We conclude with
the well-known results that V =

∑n
i=1 Xi follows the negative binomial NB (n, p)

distribution and W =
∑n

i=1 Ui follows the binomial B (n, α) distribution. This
completes the proof.

3. PARAMETER ESTIMATION

In this section, we consider the estimation of the parameters by the method
of moments and the method of maximum likelihood. Also, simulation results on
the behavior of the estimates are presented.

3.1. Method of moments. Let Z1, . . . , Zn denote a sample of iid random vari-
ables drawn from the R-G (α, p) distribution, and z1, . . . , zn some corresponding
observations. Since

P (Z = 1)

P (Z = 0)
= 1− p,

a method of moment estimate of p can be defined as follows:

(4) p̄n = 1−
∑n

i=1 1{zi=1}∑n
i=1 1{zi=0}

.

On the other hand, the method of moment estimate for α can be obtained using the
first-order moment of Z given in Equation (2). This yields the following expression:

(5) ᾱn =

z̄n −
∑n

i=1 1{zi=0}∑n
i=1 1{zi=0} −

∑n
i=1 1{zi=1}

+ 1

2
,

where

z̄n =

∑n
i=1 zi
n

.
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Remark 8. For theoretical results concerning the consistency and the asymptotic
normality of the method of moment estimators, we refer to, e.g., [16] and [23].

3.2. Behavior of the method of moment estimates via simulation study.
The assessment of the performance of the method of moment estimates is based on
a simulation study containing the following steps:

� Step 1: Fix α = α0 and p = p0.

� Step 2: Generate ten thousand samples of size n from the R-G (α0, p0) distri-
bution. The representation in Equation (1) is used to generate samples.

� Step 3: Compute Equations (4) and (5) for the ten thousand samples, say
(ᾱn,i, p̄n,i) for i = 1, . . . , 10000.

� Step 4: Calculate the biases and mean squared errors (MSEs) given by

Bias1 (n) =
1

10000

10000∑
i=1

(ᾱn,i − α0) , Bias2 (n) =
1

10000

10000∑
i=1

(p̄n,i − p0) ,

MSE1 (n) =
1

10000

10000∑
i=1

(ᾱn,i − α0)
2
, MSE2 (n) =

1

10000

10000∑
i=1

(p̄n,i − p0)
2
.

We repeated these steps for n = 25, 50, 75, 100, 125, . . . , 975, 1000 and with α0 = 0.2
and p0 = 0.6. Figure 3 shows how the biases vary with respect to n. Figure 4 shows
how the MSEs vary with respect to n. Thus, one can see that the biases for each
estimate increase to zero as n → +∞ and the MSEs for each estimate decrease to
zero as n → +∞. Furthermore, the fit to a normal distribution is illustrated in
Figure 5 for the method estimation (with n = 10000 and the parameters α0 = 0.2
and p0 = 0.6) proposed in Subsection 3.1. Thus, this figure shows numerically the
normal asymptotic distribution of the proposed estimates.

3.3. Method of maximum likelihood. Let Z1, . . . , Zn denote a sample of
iid random variables drawn from the R-G (α, p) distribution, and z1, . . . , zn some
corresponding observations. Let Zobs = {zi}ni=1 denote the set of observed data.
Moreover, we set

� I0 = {i | zi = 0, 1 ≤ i ≤ n} and m0 =
∑n

i=1 1{zi=0} (= number of elements
in I0).

� I1 = {i | zi = 1, 1 ≤ i ≤ n} and m1 =
∑n

i=1 1{zi=1} (= number of elements
in I1).

� I+2 = {i | zi ≥ 2, 1 ≤ i ≤ n}. Note that the number of elements in I+2 equals
n− (m0 +m1).
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Figure 3: From left to right: Biases of Equations (4) and (5) for n =
25, 50, 75, . . . , 975, 1000, when α0 = 0.2 and p0 = 0.6.

Figure 4: From left to right: MSEs of Equations (4) and (5) for n =
25, 50, 75, . . . , 975, 1000, when α0 = 0.2 and p0 = 0.6.

The observed-data likelihood function for θ = (α, p) is then given by

L (θ | Zobs) = (p (1− α))
m0 × (p (1− α) (1− p))

m1

×
(
p
(
α+ (1− α) (1− p)

2
))n−(m0+m1)

×
∏

i∈I+2

(1− p)
zi−2

= pn (1− α)
m0+m1

(
α+ (1− α) (1− p)

2
)n−(m0+m1)

× (1− p)

(∑
i∈I+2

zi
)
−2n+2m0+3m1 .
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Figure 5: From left to right: Normal quantile-quantile (Q-Q) plots for the errors
(from the method of the moment estimation, see Subsection 3.1), (ᾱn − 0.2) and
(p̄n − 0.6), when the length series is n = 1000.

Thus, the observed-data log-likelihood function is obtained as follows:

ℓ = log (L (θ | Zobs)) = n log (p) +A log (1− p) + (m0 +m1) log (1− α)

+ (n− (m0 +m1)) log
(
α+ (1− α) (1− p)

2
)
,

with

A =

 ∑
i∈I+2

zi

− 2n+ 2m0 + 3m1.

The maximum log-likelihood estimation of θ is defined as follows:

(6) θ̂n = (α̂n, p̂n) = argmax
θ∈(0,1)2

log (L (θ | Zobs)) .

In other words, to obtain the maximum likelihood estimates, we maximize the log-
likelihood function ℓ defined above with respect to the parameters α and p over
the appropriate parameter space. Differentiating ℓ partially with respect to the
parameters and setting them equal to zero yields the following system of likelihood
equations or score equations:.

∂ℓ

∂p
=

n

p
− A

1− p
− 2 (n− (m0 +m1))

(1− p) (1− α)

α+ (1− α) (1− p)
2 = 0

and

∂ℓ

∂α
= (n− (m0 +m1))

1− (1− p)
2

α+ (1− α) (1− p)
2 − m0 +m1

1− α
= 0.
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Since equating the first-order log-likelihood derivatives to zero leads to a compli-
cated system of equations, the maximum likelihood estimates are achieved using
numerical methods. Explicitly, we use the ”nlm” function (Non-Linear Minimiza-
tion, from package ”stats” of the software R) to find values that maximize the
log-likelihood function defined above.

Remark 9. Theoretical results concerning the asymptotic behavior of the maximum
likelihood estimator have been widely discussed in the literature. For the consistency,
see, e.g., [37], [21], and [17], and for the asymptotic normality, see the results of,
e.g., [22], [29], and [18].

3.4. Behavior of the maximum likelihood estimates via simulation study.
In this section, we aim to test the efficiency of the parameter’s estimation dis-
cussed in Subsection 3.3. Thus, using the R programming language, we sim-
ulate 1000 paths of length n = 25, 100, 250, 500 and 1000. These paths are
simulated using the representation in Equation (1) with three sets of parameters:
(a) (α0, p0) = (0.7, 0.4); (b) (α0, p0) = (0.5, 0.5); (c) (α0, p0) = (0.1, 0.6). Note that
for each path, the maximum likelihood estimation, denoted by (α̂n,i, p̂n,i) is calcu-
lated via the ”nlm” function from package ”stats” of software R. The mean values
of maximum likelihood estimates for each set of parameters are given in Table 2.
The standard deviations of the estimates are stated in brackets under the estimated
values. Thus, one can see that the precision of these estimates increases when the
size n increases. Explicitly, one can deduce that standard deviations decrease to
zero when n increases.

Finally, the fit to the normal distribution is illustrated in Figure 6 for the
maximum likelihood estimates (with the parameter set (c) and n = 1000). These
figures show numerically the normal asymptotic distribution of the proposed esti-
mates.

4. APPLICATION

In this section, the Rademacher perturbed geometric distribution is examined
for a dataset arising from the business area. Indeed, ”Secret d’Eve” is a small busi-
ness (based in Lebanon) specializing in cosmetic products. The business model of
”Secret d’Eve” is based on direct sales via social networks (in particular, Facebook
and Instagram). The dataset used for this section gives the number of ”coconut
oil” (100 ml bottles), which is one of the products offered by ”Secret d’Eve”) sold
per week in 2021:

0, 0, 2, 0, 2, 0, 3, 2, 3, 3, 5, 5, 3, 1, 0, 4, 5, 0, 5, 2, 4, 0, 2, 0, 2, 2,

2, 4, 3, 0, 1, 6, 2, 2, 0, 0, 4, 0, 2, 2, 0, 4, 1, 2, 2, 4, 3, 2, 2, 3, 0, 2.

Note that, during 2021, ”Secret d’Eve” proposed a special offer with a 50% discount
on the second bottle of ”coconut oil” purchased. Thus, in total, we have 52 obser-
vations. Basic descriptive statistics concerning the observed data are presented in
Table 3.
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Table 2: Estimated parameters and the corresponding standard errors (in brackets)
stated under the maximum likelihood method

a) α0 = 0.7 and p0 = 0.4

n = α̂ p̂

50
0.7009651 0.4047236
(0.08765927) (0.04716149)

100
0.6989499 0.4022161
(0.06023791) (0.03404406)

250
0.7008684 0.4025103
(0.03970101) (0.02143184)

500
0.6999166 0.4002412
(0.02890456) (0.01464088)

1000
0.6997472 0.3996503
(0.02035622) (0.0105077)

b) α0 = 0.5 and p0 = 0.5

n = α̂ p̂

50
0.4981015 0.5072683
(0.103134) (0.06299839)

100
0.4985988 0.5031262
(0.0702593) (0.04251333)

250
0.4986373 0.5017282
(0.04425671) (0.0278258)

500
0.4976185 0.5011049
(0.03220724) (0.01966106)

1000
0.499701 0.500419
(0.02323199) (0.01387747)

c) α0 = 0.1 and p0 = 0.6

n = α̂ p̂

50
0.092036 0.6072886
(0.1073326) (0.08610007)

100
0.09626411 0.6033917
(0.0774742) (0.06165065)

250
0.09907296 0.6021155
(0.04552499) (0.03828349)

500
0.0991955 0.6010666
(0.03283201) (0.02641448)

1000
0.09869812 0.6002303
( 0.0224928) (0.01909936)

In Figure 7, we plot the observed data. Thus, we can see that 2 is the mode
of the observed data, 0 is also well represented, and there is a decrease from the
value of 2.

The autocorrelation function (ACF) and the partial ACF (PACF) of the observed
data are plotted in Figure 8. Clearly, this graph shows that the observed data can
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Figure 6: From left to right: Normal Q-Q plots for the errors (from the maxi-
mum likelihood estimation, see Subsection 3.3), (α̂n − 0.1) and (p̂n − 0.6), when
the length series is n = 1000.

Table 3: Basic descriptive statistics for the observed data associated with the num-
ber of ”coconut oil” (100 ml bottles) sold per week in 2021.
Length Mean Min Max First quart. Median Third quart. St. deviation

52 2.077 0 6 0 2 3 1.666817

Figure 7: Plot of the number of ”coconut oil” (100 ml bottles) sold per week in
2021.

be considered observations of white noise.
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Figure 8: From left to right: ACF and PACF of the observed number of ”coconut
oil” (100 ml bottles) sold per week in 2021.

To fit these data, we propose four distributions: the Poisson (λ) distribution,
the Geometric (a) distribution, the ZTIG (π1, π2, p) distribution (i.e., the zero-two
inflated geometric distribution, which is a special case of the generalized inflated
geometric (for details, see [20] and [25]), where π1 and π2 represent the weights
associated with inflation of 0 and 2), and the R-G (α, p) distribution introduced
in this paper. The maximum likelihood estimation of the involved parameters is
presented in Table 4.

Table 4: Parameters estimation of the proposed distributions to fit the data
Distribution → R-G (α, p) Poisson (λ) Geometric (a) ZTIG (π1, π2, p)

Estimations
α̂ = 0.574512 λ̂ = 2.076923 â = 0.440642 π̂1 = 0.1175094
p̂ = 0.5186991 π̂2 = 0.2382797

p̂ = 0.2353197

The p-values of the Chi-square test for the Poisson and geometric distributions (see
Table 5) are very close to 0, suggesting that these distributions do not provide good
models to fit the data.

Table 5: Goodness-of-fit statistics of the data.
Distribution χ2 DF p-value
R-G 2.7583 2 0.25179
ZTIG 2.8111 1 0.09361
Poisson 21.9774 3 6.594125e-05
Geometric 38.6447 2 4.058916e-09
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In Table 6, the classical Akaike information criterion (AIC), Bayesian infor-
mation criterion (BIC), corrected AIC (AICc), Hannan-Quinn information criterion
(HQIC), and ”consistent” AIC (CAIC) are calculated for the ZTIG and R-G distri-
butions in order to compare the performance of both distributions in the fitting of
the considered data. Thus, one can see that the proposed R-G distribution yields
minimum values of model fit statistics with respect to the mentioned information
criteria.

Table 6: Comparison between model selection criteria.
Criterion R-G ZTIG
AIC 184.6112 185.2107
BIC 188.5137 191.0645
AICc 184.8561 185.7107
HQIC 186.1073 193.4549
CAIC 184.8561 191.7107

5. CONCLUSION

This paper offers a new two-parameter discrete distribution as a possible
alternative to the standard geometric distribution. This new distribution can be
seen as a perturbed version of the geometric distribution by adding ”random noise”
following the Rademacher distribution. We have studied several of its properties
and explored the parameter estimation issue. The new distribution has proven to
be very useful for modeling count data that presents inflated or deflated zero and/or
inflated two and/or over or under dispersion and short- and long-tailed count data.

It is also important to mention that the proposed perturbation technique of
the geometric distribution can be used in a more generalized way by considering a
different distribution associated with Y (the additive noise). Indeed, to find N as
the support of the perturbed distribution, it is enough that the support of Y has −1
as the minimum modality (the other modalities are integer values). For example,
one can consider Y as a random walk variable, i.e., Y (Ω) = {−1, 0, 1} (where the
modality −1 represents a backstep, 0 stays put, and 1 is a step forward).

REFERENCES

1. R. Agrawal, R. Srikant: Privacy-preserving data mining. In Proceedings of the
2000 ACM SIGMOD international conference on Management of data (2000), 439-450.

2. M. M. A. Almazah, T. Erbayram, Y. Akdoğan, M. M. Al Sobhi, A. Z. Afify:
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