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BY ANALYSIS OF MOMENTS OF GEOMETRIC
DISTRIBUTION: NEW FORMULAS INVOLVING

EULERIAN AND FUBINI NUMBERS

Buket Simsek∗ and Neslihan Kilar

The aim of this paper is to find new moment formulas for geometric distribu-

tion by using moments of the geometric distribution in terms of Apostol-type

and Bernstein polynomials, and Fubini and Eulerian numbers, etc. A new

generating function for moments of the geometric distribution is constructed.

New sequences of special numbers with their recurrence relations are given.

In order to compute values of these sequences and moments, codes in Wol-

fram language are given.

1. INTRODUCTION

Moments are specific quantitative measurements of the graph of a probability
distribution function. If the function is representative of mass density, it is well
known that the zeroth moment corresponds to the total mass. The first moment
corresponds to the center of mass. The second moment is known as the moment
of inertia. Additionally, the first moment is also called the expected value. Vari-
ance is defined by the first and second moments. The third standardized moment
is known as skewness, and the fourth standardized moment is known as kurtosis.
Moments have inspired the work of many researchers. Probability theory was one
of the scientific developments that reached their peak especially in the 1700s. For
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example, with the development of applied statistics, the theory of errors and the
method of least squares, probability and its applications to the statistical theory
of thermodynamics, applications to genetics, etc. developed rapidly after 1700.
Considering the historical developments, it is known that by the middle of the
nineteenth century, Russian mathematician Pafnuty Lvovich Chebyshev (16 May
1821-8 December 1894) was the first researcher to conduct systematic research in
terms of moments of random variables. As a result of Chebyshev’s studies and
experimental studies, moment calculation problems in the theory of probability
distribution functions have many important applications (cf. [2], [3], [14]). Sim-
ilarly, generating functions and moment generating functions have a variety of
applications in many areas, ranging from probability and statistics, many branches
of mathematics, engineering, and computer science. Likewise, characteristic func-
tions associated with moment generating functions have also many applications in
mathematics, especially in probability theory, analysis, combinatorics, and other
applied sciences. Recently, by using moment generating function and characteristic
function of the geometric distribution, Simsek [19] gave new formulas for moments
of the geometric distribution in terms of the Apostol-Bernoulli polynomials and
numbers. The motivation of this paper is to construct a new generating function
for the moment of the geometric distribution. By using this generating function
and its derivative and functional equations, we give new formulas and recurrence
relations for the moments involving the Apostol-Bernoulli numbers and polynomi-
als, the Bernstein polynomials, the Apostol-Euler numbers and polynomials, the
Fubini numbers, and the Eulerian numbers and polynomials. These new results are
related to special numbers with their generating functions, which are used in com-
binatorics to solve problems involving partitions, permutations, combinations, and
recurrence relations. For example, the Eulerian numbers and the Fubini numbers
are used to enumerate many different combinatorial situations.

The following notations, relations, and formulas associated with the results
of this paper are inspired by the references (see [1]-[25]).

Let

N = {1, 2, 3, . . .} , N0 := N ∪ {0} ,

and also Z, R, C denote the set of integers, the set of real numbers, the set of
complex numbers, respectively. Moreover, we assume that exp (t) := et, i2 = −1,

0r =

{
1, r = 0
0, r ∈ N

and

(y)r =

r−1∏
s=0

(y − s)

with (y)0 = 1 and r ∈ N (cf. [1]-[25]).

A random variable X has the geometric distributions with parameter p
(0 < p < 1) if X has discrete distribution for which the geometric probability
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distribution function is defined as follows:

P (X = r) = pqr−1,

where r ∈ N and p+ q = 1 (cf. [2], [3], [5]).

The moment generating function and the characteristic function of the geo-
metric distribution with success probability p are defined as follows, respectively:

MX (u) = E (exp (Xu))

and

KX (u) = E (exp (iXu))

(cf. [2], [5], [12]).

The classical method, which involves quite complex operations to calculate
each moment of the geometric distribution, is generally based on derivatives of the
geometric series. In order to solve these difficulties, Simsek [19] gave novel relations
between the MX (u) and the KX (u) in terms of the Apostol-Bernoulli numbers and
polynomials. These numbers and polynomials are defined as follows:

The Apostol-Bernoulli polynomials are defined by

(1)
t exp (ty)

β exp (t)− 1
=

∞∑
n=0

Bn (y;β)
tn

n!

(cf. [1]).

Putting y = 0 in (1), Bn (0;β) reduces to the Apostol-Bernoulli numbers
Bn (β), which are given by the following generating function:

(2)
t

β exp (t)− 1
=

∞∑
n=0

Bn (β)
tn

n!

(cf. [1]).

Substituting β = 1 into (1) and (2), one has the Bernoulli polynomials Bn (x)
and the Bernoulli numbers Bn, respectively.

With the aid of (1) and (2), the Apostol-Bernoulli numbers and polynomials
satisfies the following relations:

βBn (y + 1;β)− Bn (y;β) = nyn−1,

where n ∈ N (cf. [1]). When y = 0, the above equation reduce to the following
formulas

βB1 (1;β) = 1 + B1 (β)

and for n ≥ 2

(3) βBn (1;β) = Bn (β)
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(cf. [1]).

The Apostol-Euler polynomials are defined by

(4)
2 exp (ty)

β exp (t) + 1
=

∞∑
n=0

En (y;β)
tn

n!

(cf. [25]).

Putting y = 0 and β = 1 in (4), one obtains the Apostol-Euler numbers and
the Euler polynomials, respectively:

En (0;β) = En (β)

and
En (y; 1) = En (y) .

The Stirling numbers of the second kind are defined by

(5)
(exp (t)− 1)

r

r!
=

∞∑
n=0

S2 (n, r)
tn

n!

and their computational formula

S2 (n, r) =
1

r!

r∑
v=0

(−1)
r−v

(
r

v

)
vn

with S2 (0, 0) = 1, S2 (n, r) = 0 when r > n (cf. [4], [9], [19], [21], [25]).

Using (2) and (5), one has the following relation:

Bn (β) =
nβ

(β − 1)
n

n−1∑
s=1

(−1)
s
s!βs−1 (β − 1)

n−1−s
S2 (n− 1, s) ,

where n ∈ N and β ̸= 1 (cf. [1]).

The Eulerian polynomials are defined by

(6)
k − 1

k − exp (t (k − 1))
=

∞∑
n=0

An (k)
tn

n!

(cf. [4], [17]).

Using (6), we have

(7) An (k) =

n∑
s=0

An,sk
s,

where An,s denotes the Eulerian numbers, the number of permutations of the num-
bers 1 to n in which exactly s elements, are given by the following alternating sum
formula

(8) An,s =

s∑
v=0

(−1)
v

(
n+ 1

v

)
(s− v + 1)

n
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(cf. [4], [17]).

The Bernstein basis functions Bn
r (w) are defined by

Bn
r (w) =

(
n

r

)
wr (1− w)

n−r
,

where 0 ≤ r ≤ n, and n, r ∈ N0 and also for r < 0 or r > n,

Bn
r (w) = 0

(cf. [6], [13], [20]).

The Fubini numbers are defined by

1

2− exp (t)
=

∞∑
n=0

wg (n)
tn

n!

(cf. [4]).

The Fubini numbers, also known as the ordered Bell numbers, count the
number of weak orderings of a set of n elements. Thereby, these numbers have many
important applications in number theory, probability theory, and combinatorics.
The numbers wg (n) are also related to the many special numbers. Some of them
are given as follows:

(9) Bn

(
1

2

)
= −2nwg (n− 1) ,

wg (n) =

n∑
r=0

r!S2 (n, r) ,

wg (n) =

n−1∑
r=0

2rAn,r

and

wg (n) = An (2)

(cf. [4], [8], [9]).

An outline of the content presented in each section of this paper is given as
follows:

In Section 2, we give a solution to the open problem given by Simsek. This
problem is related to the Eulerian numbers and polynomials. Using some proper-
ties of some special numbers and polynomials, we give some finite combinatorial
sums and identities, including not only these numbers and polynomials but also the
Bernstein polynomials and the Stirling numbers. Moreover, for the purpose of cal-
culating the values of the moments of the geometric random variable, we implement
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these formulas in the Wolfram language. With the help of these implementations,
we give some values of these moments. In Section 3, using generating function
methods, we give some recurrence relations for the moments of the geometric ran-
dom variable. Further, we obtain some relations among this function and the Fubini
numbers, the Stirling numbers of the second kind, and the Apostol-Euler numbers
and polynomials. Finally, we give conclusion section.

2. FORMULAS AND RELATIONS FOR CHARACTERISTIC
FUNCTION OF THE GEOMETRIC DISTRIBUTION IN TERMS

OF THE EULERIAN NUMBERS AND POLYNOMIALS

In this section, using the properties of the Eulerian numbers, we solve the
open problem given by Simsek [19]. We give some formulas for the characteristic
function of the geometric random variable in terms of the Eulerian numbers and
polynomials. We also give some finite combinatorial sums.

Recently Simsek [19] gave the explicit formulas for the mth moment of the
geometric random variable (with parameter p) in terms of the Apostol-Bernoulli
polynomials:

(10) µ2m (p, q) = −pB2m+1 (1; q)

2m+ 1

and

(11) µ2m+1 (p, q) = −pB2m+2 (1; q)

2m+ 2
,

where p+ q = 1 with 0 < p < 1 and m ∈ N0.

Simsek [19] gave the following result:

“When the coefficients of each numerator of the Apostol-Bernoulli numbers
are carefully examined respectively”, the following sequence was given

{1,−2, 3,−4, . . .} =
{
(−1)n+1n

}∞
n=1

.

We set
bn = (−1)n+1n,

where a positive integer n is an index of the Apostol-Bernoulli numbers. That is,
each of member of this sequence corresponds to the index of the relevant Apostol-
Bernoulli numbers. Generating function for the numbers bn is given as follows:

(12)
t

(1 + t)2
=

∞∑
n=0

bnt
n.

Applying binomial theorem to Eq. (12), we get

∞∑
n=0

bnt
n =

∞∑
n=1

(
−2

n− 1

)
tn.
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Thus we get another formula for the numbers bn:

bn =
(−2)n−1

(n− 1)!
,

where n ∈ N.
Simsek [19] also came up with the following open problem:

Is there any relationship between moments and the triangle of Eulerian num-
bers? How can the polynomial of q in the numerators of the moments be expressed
in terms of the triangle of Eulerian numbers?

Now, let’s investigate the answer to this open problem. There are relations
among moment of the geometric random variable with parameter p, the Eulerian
numbers and polynomials. Using (3), (10) and (11), for m ∈ N, we have

(13) µ2m (p, q) = −p

q

B2m+1 (q)

2m+ 1

and

(14) µ2m+2 (p, q) = −p

q

B2m+2 (q)

2m+ 2
.

Combining (13) and (14) with the following formula

(15) Am−1 (β) = − (1− β)
m

mβ
Bm (β) ,

where m ∈ N (cf. [21, Corollary 4]), we have

(16) µ2m (p, q) =
1

p2m
A2m (q)

and

(17) µ2m+1 (p, q) =
1

p2m+1
A2m+1 (q) .

From (16) and (17), we obtain the following result:

Theorem 1. Let p + q = 1 with 0 < p < 1, n ∈ N0. Let µn (p, q) be nth moment
of the geometric random variable with parameter p. We have

(18) µn (p, q) =
1

pn
An (q) .

Combining (18) with (7), we also obtain the following result involving the
Eulerian numbers:

Corollary 2. Let p+ q = 1 with 0 < p < 1 and n ∈ N0. We have

(19) µn (p, q) =
1

pn

n∑
r=0

An,rq
r.
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Combining (19) with (8) yields the following formula:

Theorem 3. Let p+q = 1 with 0 < p < 1 and n ∈ N0. Let µn (p, q) be nth moment
of the geometric random variable with parameter p. Then we have

(20) µn (p, q) =

n∑
r=0

qr

pn

r∑
v=0

(−1)
v

(
n+ 1

v

)
(r − v + 1)

n
.

Joining the following formula

An (β) = (1− β)
n+1

∞∑
k=0

(k + 1)
n
βk,

(cf. [17]) with (18), we arrive at the following infinite series representation of the
µn (p, q):

Theorem 4. Let p+q = 1 with 0 < p < 1 and n ∈ N0. Let µn (p, q) be nth moment
of the geometric random variable with parameter p. Then we have

(21) µn (p, q) = p

∞∑
k=0

(k + 1)
n
qk.

Here we note that the Eq. (21) is related to moment generating function and
probability generating function for geometric distribution. This equation gives us
the following definition:

µn (p, q) =

∞∑
k=1

knpqk−1.

That is,

µn (p, q) =
∞∑
k=1

knP (X = k) .

To calculate the values of µn (p, q), we implement (20) in the Wolfram lan-
guage as follows:

Implementation 1: Using (20), the following code is written in the Wolfram lan-
guage for the µn (p, q).

1 Unprotect[Power];
2 Power[0,0] = 1;
3 Protect[Power];
4 Table[(1/pˆn)*Sum[(=1)ˆv * qˆr Binomial[n+1,v]*(r=v+1)ˆn,{r,0,n},{v,0,r}], {n,0,10}]



By analysis of moments of geometric distribution: New formulas ... 241

From the above implementation, a few values of the µn (p, q) are given as
follows:

µ0 (p, q) = 1,

µ1 (p, q) =
1

p
,

µ2 (p, q) =
1 + q

p2
,

µ3 (p, q) =
1 + 4q + q2

p3
,

µ4 (p, q) =
1 + 11q + 11q2 + q3

p4
,

µ5 (p, q) =
1 + 26q + 66q2 + 26q3 + q4

p5
,

µ6 (p, q) =
1 + 57q + 302q2 + 302q3 + 57q4 + q5

p6
,

µ7 (p, q) =
1 + 120q + 1191q2 + 2416q3 + 1191q4 + 120q5 + q6

p7
,

µ8 (p, q) =
1 + 247q + 4293q2 + 15619q3 + 15619q4 + 4293q5 + 247q6 + q7

p8
,

µ9 (p, q) =
1 + 502q + 14608q2 + 88243q3 + 156190q4 + 88263q5

p9

+
14608q6 + 502q7 + q8

p9
,

µ10 (p, q) =
1 + 1013q + 47840q2 + 455192q3 + 1310354q4 + 1310354q5

p10

+
455192q6 + 47840q7 + 1013q8 + q9

p10
.

2.1 Some relations for the moments of the geometric random
variable

Here, we give some formulas for special values of p and q on rational numbers.
It can be easily seen that the moments found in the previous section with the help
of values of n from 1 to 10 are rational functions. It can be seen that the moment
values for p = 1

k and q = k−1
k are polynomials with integer coefficients. In this

section, these are detailed with examples. These formulas include the Bernstein
polynomials, the Eulerian numbers and polynomials, and the Stirling numbers of
the second kind.
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Substituting p = 1
k and q = k−1

k into (18), we obtain the following result:

(22) µj

(
1

k
,
k − 1

k

)
= kjAj

(
k − 1

k

)
,

where k ∈ N with k > 1 and j ∈ N0.

Combining the following formula, for n ∈ N,

An (β) =

n∑
r=1

r!(
n
r

)Bn
r (β)S2 (n, r) ,

(cf. [21, Theorem 4]) with (22), we have the following relation including jth mo-
ments of the geometric random variable with parameter 1

k , the Bernstein polyno-
mials, and the Stirling numbers of the second kind:

Theorem 5. Let j ∈ N. Then we have

µj

(
1

k
,
k − 1

k

)
= kj

j∑
r=1

r!(
j
r

)Bj
r

(
k − 1

k

)
S2 (j, r) .

To calculate the values of µj

(
1
k ,

k−1
k

)
, we implement (22) in the Wolfram

language as follows:

Implementation 2: Using (7), (8) and (22), the following code is written in the
Wolfram language for the µj

(
1
k ,

k−1
k

)
.

1 A[n , s ]:=Sum[(=1)ˆv *Binomial[n+1,v]*(s=v+1)ˆn,{v,0,s}];
2 EulerianPoly [n ,k ]:=Sum[A[n,s]*kˆs,{s ,0, n}];
3 Simplify [Table[kˆj*EulerianPoly [ j ,(k=1)/k],{j ,0,10}]]

From the Implementation 2, a few values of the µj

(
1
k ,

k−1
k

)
are given as
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follows:

µ0

(
1

k
,
k − 1

k

)
= 1,

µ1

(
1

k
,
k − 1

k

)
= k,

µ2

(
1

k
,
k − 1

k

)
= k(−1 + 2k),

µ3

(
1

k
,
k − 1

k

)
= k

(
1− 6k + 6k2

)
,

µ4

(
1

k
,
k − 1

k

)
= k

(
−1 + 14k − 36k2 + 24k3

)
,

µ5

(
1

k
,
k − 1

k

)
= k

(
1− 30k + 150k2 − 240k3 + 120k4

)
,

µ6

(
1

k
,
k − 1

k

)
= k

(
−1 + 62k − 540k2 + 1560k3 − 1800k4 + 720k5

)
,

µ7

(
1

k
,
k − 1

k

)
= k

(
1− 126k + 1806k2 − 8400k3 + 16800k4

)
+k

(
−15120k5 + 5040k6

)
,

µ8

(
1

k
,
k − 1

k

)
= k

(
−1 + 254k − 5796k2 + 40824k3 − 126000k4

)
+k

(
191520k5 − 141120k6 + 40320k7

)
,

µ9

(
1

k
,
k − 1

k

)
= k

(
1− 510k + 18150k2 − 186480k3 + 834120k4

)
+k

(
−1905120k5 + 2328480k6 − 1451520k7 + 362880k8

)
,

µ10

(
1

k
,
k − 1

k

)
= k

(
−1 + 1022k − 55980k2 + 818520k3 − 5103000k4

)
+k

(
16435440k5 − 29635200k6 + 30240000k7

)
+k

(
−16329600k8 + 3628800k9

)
.

3. RECURRENCE RELATIONS FOR THE MOMENTS OF THE
GEOMETRIC RANDOM VARIABLE

In this section, we give generating function for the moments of the geometric
random variable, µj

(
1
k ,

k−1
k

)
. We also give some recurrence relations and formulas

for the moments. These formulas are related to the Fubini numbers, the Stir-
ling numbers of the second kind, and the Apostol-Euler numbers and polynomials.
We also give some remarks and observations for the some special values of the
µj

(
1
k ,

k−1
k

)
.
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Theorem 6. Let j ∈ N. Then we have

(23) µj

(
1

k
,
k − 1

k

)
= 1 + (k − 1)

j−1∑
r=0

(
j

r

)
µr

(
1

k
,
k − 1

k

)
.

Proof. Using (10) and (11), we have

(24) µj (p, q) = −pBj+1 (1; q)

j + 1
.

Substituting p = 1
k and q = k−1

k (k ∈ N with k > 1) into (24), we get

(25) µj

(
1

k
,
k − 1

k

)
= −

1
kBj+1

(
1; k−1

k

)
j + 1

.

Summing both sides of the Eq. (25) from j = 0 to ∞, we have

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
= −1

k

∞∑
j=0

Bj+1

(
1; k−1

k

)
j + 1

tj

j!
.

Combining the above equation with (1), after some calculations, we obtain the
following generating function for the µj

(
1
k ,

k−1
k

)
:

(26)

1
(k−1) exp (t)

k
k−1 − exp (t)

=

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
.

Using (26), we have

k

k − 1

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
−

∞∑
j=0

tj

j!

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
=

1

(k − 1)

∞∑
j=0

tj

j!
.

Thus

k

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
− (k − 1)

∞∑
j=0

j∑
r=0

(
j

r

)
µr

(
1

k
,
k − 1

k

)
tj

j!
=

∞∑
j=0

tj

j!
.

Comparing the coefficients of tj

j! on both sides of the above equation, we get

kµj

(
1

k
,
k − 1

k

)
− (k − 1)

j∑
r=0

(
j

r

)
µr

(
1

k
,
k − 1

k

)
= 1.

From the above equation, we arrive at the desired result.

Theorem 7. Let j ∈ N and µ0

(
1
k ,

k−1
k

)
= 1. Then we have

(27) µj

(
1

k
,
k − 1

k

)
= −k

j∑
r=1

(−1)
r

(
j

r

)
µj−r

(
1

k
,
k − 1

k

)
.
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Proof. Using (26), we have

k

∞∑
j=0

(−1)
j t

j

j!

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
− (k − 1)

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
= 1.

Hence,

k

∞∑
j=0

j∑
r=0

(−1)
r

(
j

r

)
µj−r

(
1

k
,
k − 1

k

)
tj

j!
− (k − 1)

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
= 1.

Comparing the coefficients of tj

j! on both sides of the above equation, we get

µ0

(
1

k
,
k − 1

k

)
= 1

and j ∈ N,

k

j∑
r=0

(−1)
r

(
j

r

)
µj−r

(
1

k
,
k − 1

k

)
− (k − 1)µj

(
1

k
,
k − 1

k

)
= 0.

After some calculations, we have

µj

(
1

k
,
k − 1

k

)
= −k

j∑
r=1

(−1)
r

(
j

r

)
µj−r

(
1

k
,
k − 1

k

)
.

Thus, the proof of this theorem is completed.

Theorem 8. Let j ∈ N0. Then we have

µj+1

(
1

k
,
k − 1

k

)
= − 1

j + 1

j+1∑
r=0

(
j + 1

r

)
µr

(
1

k
,
k − 1

k

)
Bj+1−r

(
k − 1

k

)
.

Proof. By applying derivative operator with respect to t to the Eq. (26), we have

∞∑
j=0

µj+1

(
1

k
,
k − 1

k

)
tj

j!
=

k exp(t)

(k−1)2(
k

k−1 − exp (t)
)2 .

Combining the above equation with (2) and (26), we get

∞∑
j=0

µj+1

(
1

k
,
k − 1

k

)
tj

j!
= −1

t

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!

∞∑
j=0

Bj

(
k − 1

k

)
tj

j!
.

Thus

∞∑
j=0

µj+1

(
1

k
,
k − 1

k

)
tj

j!
= −

∞∑
j=0

j+1∑
r=0

(
j+1
r

)
j + 1

µr

(
1

k
,
k − 1

k

)
Bj+1−r

(
k − 1

k

)
tj

j!
.

Comparing the coefficients of tj

j! on both sides of the above equation, we arrive at
the desired result.
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Theorem 9. Let j ∈ N. Then we have

(28) µj

(
1

k
,
k − 1

k

)
= 1 +

j∑
r=1

(
j

r

) r∑
n=1

(k − 1)
n
n!S2(r, n).

Proof. By applying Herschel’s theorem (cf. [1]) to (26), we get

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
= et + et

∞∑
n=1

((
et − 1

)
(k − 1)

)n
.

Combining the above equation with (5) yields

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
=

∞∑
j=0

tj

j!
+

∞∑
j=0

tj

j!

∞∑
j=0

j∑
n=1

(k − 1)
n
n!S2(j, n)

tj

j!
.

By applying the Cauchy product formula to the right-hand side of the above equa-
tion for two infinite series yields

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
=

∞∑
j=0

tj

j!
+

∞∑
j=0

j∑
r=0

(
j

r

) r∑
n=1

(k − 1)
n
n!S2(r, n)

tj

j!
.

Comparing the coefficients of tj

j! on both sides of the above equation, we arrive at
the desired result.

Remark 10. In [19] and [20], Simsek gave the following formula:

µj (p, q) = p

j∑
r=1

r!qr−1

(1− q)
r+1S2(j, r).

When p = 1
k and q = k−1

k (k ∈ N with k > 1), the above formula reduces to the
following result:

µj

(
1

k
,
k − 1

k

)
= k

j∑
r=1

r! (k − 1)
r−1

S2(j, r).

Moreover, using (26), we also get the following formula for the µj

(
1
k ,

k−1
k

)
:

(29) µj

(
1

k
,
k − 1

k

)
=

j∑
r=1

(−1)j−rr!krS2(j, r).

Thus, proof of formula (28) is different that of the above formulas.
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Theorem 11. Let j ∈ N. Then we have

µj

(
1

k
,
k − 1

k

)
=

1

2k
Ej

(
1;

1− k

k

)
or equivalently

µj

(
1

k
,
k − 1

k

)
=

1

2k

j∑
r=0

(
j

r

)
Er

(
1− k

k

)
.

Proof. Using (26), we have

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
=

1

2k

2 exp (t)(
1 + 1−k

k exp (t)
) .

Combining the above equation with (4), we obtain

∞∑
j=0

µj

(
1

k
,
k − 1

k

)
tj

j!
=

1

2k

∞∑
j=0

Ej
(
1;

1− k

k

)
tj

j!
.

Comparing the coefficients of tj

j! on both sides of the above equation, we arrive at
the desired result.

Now, we give some examples of the µj

(
1
k ,

k−1
k

)
:

When k = 2 in (22) and using (15), we have

µj

(
1

2
,
1

2

)
= −

Bj+1

(
1
2

)
j + 1

.

Combining the above equation with (9), we obtain the following result:

Corollary 12. Let j ∈ N. Then we have

(30) µj

(
1

2
,
1

2

)
= 2wg (j) .

For k = 2 in (29), we have

µj

(
1

2
,
1

2

)
=

j∑
r=1

(−1)j−rr!2rS2(j, r).

Here we note that using Eqs. (28) and (29), many interesting known or new
families of definite finite sums can be found. For example, the following finite sum,
which includes the Bernoulli numbers and the Stirling numbers of the second kind,
are among the members of the similar family of such sums:

(31)

j∑
r=1

(−1)rr!2−rS2(j, r) =
2

j + 1

(
1− 2j+1

)
Bj+1,
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where Bj denotes the Bernoulli numbers (cf. [24, p. 154, Eq. (17)]). Proof of
equation (31) was found by using the analytical continuation of the Riemann zeta
function and properties of the finite sums. Consequently, the proof technique of
this sum is definitely different from the that of ours.

When k = 2 in (23) and (27), we have the following relations, for j ≥ 1:

µj

(
1

2
,
1

2

)
= 1 +

j−1∑
r=0

(
j

r

)
µr

(
1

2
,
1

2

)
and

µj

(
1

2
,
1

2

)
= −2

j∑
r=1

(−1)
r

(
j

r

)
µj−r

(
1

2
,
1

2

)
,

where µ0

(
1
2 ,

1
2

)
= 1.

Using the above equations (or (30)), some values of the µj

(
1
2 ,

1
2

)
are given

as follows:

µ0

(
1

2
,
1

2

)
= 1, µ1

(
1

2
,
1

2

)
= 2, µ2

(
1

2
,
1

2

)
= 6,

µ3

(
1

2
,
1

2

)
= 26, µ4

(
1

2
,
1

2

)
= 150, µ5

(
1

2
,
1

2

)
= 1082,

µ6

(
1

2
,
1

2

)
= 9366, µ7

(
1

2
,
1

2

)
= 94586, µ8

(
1

2
,
1

2

)
= 1091670,

µ9

(
1

2
,
1

2

)
= 14174522, µ10

(
1

2
,
1

2

)
= 204495126, . . .

see, for detail A000629 in the On-Line Encyclopedia of Integer Sequences [16].

When k = 3 in (29), we get

µj

(
1

3
,
2

3

)
=

j∑
r=0

(−1)j−r3rS2(j, r)r!

see, for detail A201339 [16].

When k = 3 in (26), we obtain the following generating function of the
µj

(
1
3 ,

2
3

)
:

∞∑
j=0

µj

(
1

3
,
2

3

)
tj

j!
=

exp (t)

3− 2 exp (t)

for detail A201339 [16].

When k = 3 in (23) and (27), we have

µj

(
1

3
,
2

3

)
= −3

j∑
r=1

(−1)
j−r

(
j

r

)
µj−r

(
1

3
,
2

3

)
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and

µj

(
1

3
,
2

3

)
= 1 + 2

j−1∑
r=0

(
j

r

)
µr

(
1

3
,
2

3

)
see, for detail A201339 [16].

Using the above equations (or (22)), some values of the µj

(
1
3 ,

2
3

)
are given

as follows:

µ0

(
1

3
,
2

3

)
= 1, µ1

(
1

3
,
2

3

)
= 3, µ2

(
1

3
,
2

3

)
= 15,

µ3

(
1

3
,
2

3

)
= 111, µ4

(
1

3
,
2

3

)
= 1095, µ5

(
1

3
,
2

3

)
= 13503,

µ6

(
1

3
,
2

3

)
= 199815, µ7

(
1

3
,
2

3

)
= 3449631, µ8

(
1

3
,
2

3

)
= 68062695,

µ9

(
1

3
,
2

3

)
= 1510769343, µ10

(
1

3
,
2

3

)
= 37260156615, . . .

see, for detail A201339 [16].

For k = 4 in (29), we get

µj

(
1

4
,
3

4

)
=

j∑
r=0

(−1)j−r4rS2(j, r)r!

see, for detail A201354 [16].

When k = 4 in (26), we have the following generating function of the µj

(
1
4 ,

3
4

)
∞∑
j=0

µj

(
1

4
,
3

4

)
tj

j!
=

exp (t)

4− 3 exp (t)

see, for detail A201354 [16].

When k = 4 in (23) and (27), we have the recurrence relations of the µj

(
1
4 ,

3
4

)
are given by

µj

(
1

4
,
3

4

)
= −4

j∑
r=1

(−1)
r

(
j

r

)
µj−r

(
1

4
,
3

4

)
and

µj

(
1

4
,
3

4

)
= 1 + 3

j−1∑
r=0

(
j

r

)
µr

(
1

4
,
3

4

)
for detail A201354.

When k = 4 in the above equations (or (22)), some values of the µj

(
1
4 ,

3
4

)
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are given as follows:

µ0

(
1

4
,
3

4

)
= 1, µ1

(
1

4
,
3

4

)
= 4, µ2

(
1

4
,
3

4

)
= 28,

µ3

(
1

4
,
3

4

)
= 292, µ4

(
1

4
,
3

4

)
= 4060, µ5

(
1

4
,
3

4

)
= 70564,

µ6

(
1

4
,
3

4

)
= 1471708, µ7

(
1

4
,
3

4

)
= 35810212, µ8

(
1

4
,
3

4

)
= 995827420,

µ9

(
1

4
,
3

4

)
= 31153998244, µ10

(
1

4
,
3

4

)
= 1082931514588

see, for detail A201354 [16].

4. CONCLUSION

In general, in order to calculate each moment of the geometric distribution,
applying higher order derivatives to the geometric series is known as the classical
method. It is known that this method requires really time-consuming operations to
find the moments after the 2nd moment value. With the aid of new moments for-
mulas for moments of the geometric distribution in terms of the Apostol-Bernoulli
polynomials and numbers which was proved by Simsek [19], we gave new moments
formulas and their generating functions. We showed that these formulas can be
given in terms of the Bernstein polynomials, the Apostol-Euler polynomials, the
Fubini numbers and the Eulerian numbers and polynomials. Some recurrence re-
lations and identities for these moments were found. Using these formulas, some
applications of the moments and associated special numbers sequences were given.
Furthermore, some codes in the Wolfram language and some numerical values for
these moments were given. The formulas of this paper may also be related to
other the special numbers, polynomials, and their generating functions. Generat-
ing functions have a variety of applications in many areas, ranging from probability
and statistics, many branches of mathematics, engineering, and computer science.
Perhaps researching these formulas will provide significant contributions to the
discovery of newer formulas with asymptotic expansions and their use in applied
sciences.
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Niğde Ömer Halisdemir University,
TR-51700 Niğde, Turkey
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