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SHARP UPPER BOUNDS FOR THE NUMBER

OF SPANNING TREES OF A GRAPH

Lihua Feng, Guihai Yu, Zhengtao Jiang, Lingzhi Ren

This note presents two new upper bounds for the number of spanning trees of
a graph in terms of the order, edge number and maximum degree of a graph.

1. INTRODUCTION

Let G = (V, E) be a simple graph with n vertices and e edges. Suppose
the vertex set is V = {v1, v2, . . . , vn} with non increasing degree sequence d1 ≥
d2 ≥ · · · ≥ dn, where di is the degree of vertex vi for i = 1, 2, . . . , n. The matrix
L(G) = D(G) − A(G) is called the Laplacian matrix of graph G, where D(G) =
diag

(

d(u), u ∈ V
)

is the diagonal matrix of vertex degrees of G and A(G) is the
adjacency matrix of G. The eigenvalues of L(G) are called the Laplacian eigenvalues

and denoted by λ1 ≥ λ2 ≥ · · · ≥ λn = 0. It is well known that λ1 ≤ n.

We denote the number of spanning trees (also known as complexity) of G

by κ(G). The following formula in terms of the Laplacian eigenvalues of G is well
known (see, for example, [2], p. 39):

κ(G) =
1

n

n−1
∏

i=1

λi.

Next, we present some known upper bounds for κ(G).

(1) Grimmett [4].

(1) κ(G) ≤
1

n

(

2e

n − 1

)n−1

.
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(2) Grone and Merris [5].

(2) κ(G) ≤

(

n

n − 1

)n−1









n
∏

i=1

di

n
∑

i=1

di









.

(3) Nosal [8]. For r-regular graph,

(3) κ(G) ≤ nn−2

(

r

n − 1

)n−1

.

(4) Kelmanns ([2], p. 222).

(4) κ(G) ≤ nn−2

(

1 −
2

n

)e

.

(5) Das [3].

(5) κ(G) ≤

(

2e − d1 − 1

n − 2

)n−2

.

(6) Zhang [9]. (Always better than (1).) For a =
(

n(n − 1) − 2e

2en(n − 2)

)1/2

,

(6) κ(G) ≤
(

1 + (n − 2)a
)

(1 − a)n−2 1

n

(

2e

n − 1

)n−1

.

In this note, we establish the following two new upper bounds for the com-
plexity of a connected graph.

Theorem 1.1. For a connected graph G, we have

(7) κ(G) ≤

(

d1 + 1

n

)(

2e − d1 − 1

n − 2

)n−2

.

The equality in (7) holds if and only if G is a complete graph or a star graph.

Theorem 1.2. For a connected graph G, we have

(8) κ(G) ≤





n
∑

i=1

d 2
i + 2e − (d1 + 1)2

n − 2





n−2

2

.

The equality in (8) holds if and only if G is a complete graph or a star graph.

From Theorem 1.2 and Lemma 2.3 in the next section, we have
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Corollary 1.3. For a connected graph G, we have

(9) κ(G) ≤

(

e
(

2e

n − 1
+ n

)

− (d1 + 1)2

n − 2

)

n−2

2

.

The equality in (9) holds if and only if G is a complete graph or a star graph.

2. LEMMAS AND PROOFS

Lemma 2.1. [6] If G is a graph of order n with at least one edge, and the maximum

degree of G is d1, then λ1(G) ≥ d1+1. Moreover, if G is connected, then the equality

holds if and only if d1 = n − 1.

Lemma 2.2. [3] Let G be a connected graph of order n ≥ 3. Then λ2 = · · · = λn−1

if and only if G is a complete graph or a star graph or a (d1, d1) complete bipartite

graph.

Lemma 2.3. [1, 7] Let G be a connected graph with n vertices and e edges and

let π = (d1, d2, . . . , dn) be the degree sequence of G. Then

n
∑

i=1

d 2
i ≤ e

(

2e

n − 1
+ n − 2

)

.

The equality holds if and only if G is a complete graph or a star graph.

Next, we present the proof of the main results of this note.

Proof. (Theorem 1.1) We have

κ(G) =
1

n

n−1
∏

i=1

λi =
1

n
λ1

n−1
∏

i=2

λi ≤
λ1

n





n−1
∑

i=2

λi

n − 2





n−2

=
λ1

n





n−1
∑

i=1

λi − λ1

n − 2





n−2

=
λ1

n

(

2e − λ1

n − 2

)n−2

.

For d1 + 1 ≤ x ≤ n, let

f(x) = x
(

2e − x
)n−2

.

Taking derivative with respect to x, we have

df(x)

dx
= f(x)

2e − (n − 1)x

x(2e − x)
.

Since d1 + 1 ≥
2e

n − 1
, so

df(x)

dx
≤ 0 for d1 + 1 ≤ x ≤ n. Hence f(x) takes the

maximum value at x = d1 + 1 and we can get the result directly.
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If the equality holds in (7), then all the inequalities in the above proof must
be equalities. Hence we have λ1 = d1+1, λ2 = · · · = λn−1. By Lemma 2.1, we have
d1 = n− 1. By Lemma 2.2, we have that G is a complete graph or a star graph or
a (d1, d1) complete bipartite graph. Combining the above cases, we conclude that
G must be a complete graph or a star graph. �

Proof. (Theorem 1.2) We have

κ2(G) =
1

n2

n−1
∏

i=1

λ 2
i =

1

n2
λ2

1

n−1
∏

i=2

λ 2
i ≤

λ 2
1

n2





n−1
∑

i=2

λ 2
i

n − 2





n−2

≤





n−1
∑

i=1

λ 2
i − λ 2

1

n − 2





n−2

=





n
∑

i=1

d 2
i + 2e − (d1 + 1)2

n − 2





n−2

.

If the equality holds in (8), then all the inequalities in the above proof must
be equalities. Hence we have λ1 = n, λ2 = · · · = λn−1. By Lemma 2.1, we have
d1 = n− 1. By Lemma 2.2, we have that G is a complete graph or a star graph or
a (d1, d1) complete bipartite graph. Combining the above cases, we conclude that
G must be a complete graph or a star graph. �

Proof. (Corollary 1.3) By the proof of Theorem 1.2 and Lemma 2.3, we can get
the result. �

Remark. It is easy to see that (7) is never worse than (5).

At last, we will show that (7) is never worse than (8), and hence by Lemma
(2.3), (7) is never worse than (9). Denote the right hand side of (7) and (8) by M1

and M2, respectively. From the proof of Theorems 1.1 and 1.2, we have

M1 =
λ1

n





n−1
∑

i=2

λi

n − 2





n−2

≤





n−1
∑

i=2

λi

n − 2





n−2

, M 2
2 =





n−1
∑

i=2

λ 2
i

n − 2





n−2

.

Since
n−1
∑

i=2

λ 2
i ≥

(

n−1
∑

i=2

λi

)

2

n − 2
, we have

M 2
1 − M 2

2 ≤





(

n−1
∑

i=2

λi

)2

(n − 2)2





n−2

−





n−1
∑

i=2

λ 2
i

n − 2





n−2

≤





(

n−1
∑

i=2

λi

)2

(n − 2)2





n−2

−





(

n−1
∑

i=2

λi

)2

(n − 2)2





n−2

= 0.
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Hence, we get M1 ≤ M2.
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