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CHROMATICITY OF COMPLETE 4-PARTITE GRAPHS
WITH CERTAIN STAR OR MATCHING DELETED

G. C. Lau, Y. H. Peng

Let P(G, A) be a chromatic polynomial of a graph G. Two graphs G and H are
said to be chromatically equivalent, denoted G ~ H, if P(G,\) = P(H,\).
We write [G] = {H | H ~ G}. If [G] = {G}, then G is said to be chromatically
unique. In this paper, we first characterize certain complete 4-partite graphs
G accordingly to the number of 5-independent partitions of GG. Using these
results, we investigate the chromaticity of G with certain star or matching
deleted. As a by-product, we obtain new families of chromatically unique
complete 4-partite graphs with certain star or matching deleted.

1. INTRODUCTION

All graphs considered in this paper are finite and simple. For a graph G, we
denote by P(G;\) (or P(G)), the chromatic polynomial of G. Two graphs G and
H are said to be chromatically equivalent (simply x-equivalent), denoted G ~ H if
P(G) = P(H). A graph G is said to be chromatically unique (simply x-unique), if
H ~ G implies that H = G. A family G of graphs is said to be chromatically-closed
(simply x-closed) if for any graph G € G, P(H) = P(G) implies that H € G. Many
families of y-unique graphs are known (see [3, 4]).

For a graph G, let e¢(G), v(G), t(G) and x(G) respectively be the number
of vertices, edges, triangles and chromatic number of G. By G, we denote the
complement of G. Let O,, be an edgeless graph with n vertices. Also let Q(G) and
K(G) be the number of induced subgraphs C4 and complete subgraphs K4 in G.
Let S be a set of s(> 1) edges of G. Denote by G — S the graph obtained from
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G by deleting all edges in S, and by (S) the graph induced by S. For ¢t > 2 and
1 <p1 <py <. <pylet K(p1,p2,...,pt) be a complete t-partite graph with
partition sets V; such that |V;| = p; for i = 1,2,...,¢. In [5, 8, 9, 10], LAU and
PENG, and ZHAO et al. proved that certain families of complete t-partite graphs
(t = 3,4,5) with a matching or a star deleted are y-unique. In this paper, we first
characterize certain complete 4-partite graphs G accordingly to the number of 5-
independent partitions of (G. Using these results, we investigate the chromaticity of
G with certain star or matching deleted. As a by-product, we obtain new families
of chromatically unique complete 4-partite graphs with certain star or matching
deleted.

2. PRELIMINARY RESULTS AND NOTATIONS

Let K~%(p1,p2,. .., pt) denote the family { K (p1, p2,...,p:)—S|S C E(K(p1,
pa,...,p)) and |S| = s}. For p; > s+ 1, we denote by K;JK(LS)(phpg7 ..., pt) the
graph in X~%(p1,pa,...,p:) where the s edges in S induced a K (1,s) with center
in V; and all the end-vertices in Vj, and by K;fKQ (p1,p2,...,pt) the graph in
K~%(p1,p2,---,pt) where the s edges in S induced a matching with end-vertices in
Vi and V.

For a graph G and a positive integer k, a partition {41, As, ..., A} of V(G)
is called a k-independent partition in G if each A; is a non-empty independent set of
G. Let a(G, k) denote the number of k-independent partitions in G. If G is of order
n, then P(G,\) = > oG, k)(A)x where (A)y = AA—1)--- (A =k +1) (see [6]).
Therefore, a(G, k) i ;(H, k) for each k =1,2,...,if G ~ H.

For a graph G with n vertices, the polynomial o(G,x) = Za(G,k)xk is
called the o-polynomial of G (see [1]). Clearly, P(G,\) = P(HfA)1 implies that
o(G,x) =o(H,x).

For disjoint graphs G and H, G + H denotes the disjoint union of G and
H; GV H denotes the graph whose vertex-set is V(G) U V(H) and whose edge-set
is {ay|z € V(G) and y € V(H)} U E(G) U E(H). Throughout this paper, all the
t-partite graphs G under consideration are 2-connected with x(G) = t. For terms
used but not defined here we refer to [7].

Lemma 2.1. (KoH and TEO [3]) Let G and H be two graphs with H ~ G, then
v(G) =v(H), e(G) = e(H), t(G) = t(H) and x(G) = x(H). Moreover, a(G, k) =
a(H, k) for each k=1,2,..., and

—Q(G)+2K(G)=—-Q(H) +2K(H).
Note that if x(G) = 3, then G ~ H implies that Q(G) = Q(H).

Lemma 2.2. (BRENTI [1]) Let G and H be two disjoint graphs. Then
o(GV H,z) =0(G,x)o(H, ).
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In particular,

o(K(ny,na,...,ne),x) = H (O, x).

Lemma 2.3. Let G be a connected t-partite graph. If H ~ G, then there exists a
complete t-partite graph F = K(x1,xa,...,2¢) such that H = F — S’ with |S'| =
s’ =e(F) — e(G).

Proof. Since V(G) has a t-independent partition, then V(H) also has a ¢-indepe-
ndent partition with independent sets Vi, Va, ..., V; such that |V;| = x;. Hence, H is
a t-partite graph and there exists a complete t-partite graph F' = K(x1,22,...,2¢)
such that H = F — S’. Since H ~ G, by Lemma 2.1, we have s’ = ¢(F) — e(G). O

Let H = K(x1,22,23,...,2¢) and H = K(x1,22,...,2+1,. .. x;—1, ..., 2¢).
If i < j and z; — x; > 2, then H’ is called an improvement of H.

Lemma 2.4. Suppose H' = K(x1,x2,...,x;+1,...,2; —1,...,2¢) is an improve-
ment of H = K(x1,22,23,...,2¢), then a(H,t + 1) >a(H',t + 1).

t
Proof. Note that a(H',t+ 1) = Y 2% 14 2%~1 — 272 and o(H,t + 1) =

k=1
t

> 2%7' Hence, a(H,t + 1) — a(H',t +1) = 2572~ 2%~1 > 2071 > . O

k=1

Suppose G = K(p1,p2,-..,p:) and H = G — S for a set S of s edges of G.
Define ay(H) = o(H, k) — a(G, k) for k >t + 1.

Lemma 2.5. (ZHAO [9]) Let G = K(p1,p2,.--,pt) and H=G — S. If p1 > s+ 1,
then
s<ap1(H)=a(H,t+1)—a(G,t+1) <2° -1,

a1 (H) = s if and only if the subgraph induced by any r > 2 edges in S is not a
complete multipartite graph, and ayp1(H) = 2° — 1 if and only if (S) = K(1,s).

Lemma 2.6. (DONG et al. [2]) Let p1,p2 and s be positive integers with 3 < p; <
D2, then

i) KK p1,p2) 18 x-unique for 1 < s < pg — 2,
( ) 1,2 X
(ii) K;JK(LS) (p1,p2) is x-unique for 1 < s <p; —2, and
(iii) K—*K2(p1,po) is x-unique for 1 < s < pj — 1.
The following lemma is easily proved by induction.

Lemma 2.7. Let s; (1 <i<t) be positive integers. Then
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For a graph G € K~%(p1,pa, .. .,pt), we say an induced C4 subgraph of G is
of Type 1 (respectively Type 2, and Type 3) if the vertices of the induced Cy4 are
in exactly two (respectively three, and four) partite sets of V(G). An example of
induced Cy of Type 1, 2 and 3 is shown in Figure 1.

Type 1

Figure 1: Three types of induced C4

Suppose G is a graph in K=°(p1,p2,...,p). Let S;; (1 <i<t,1<j5<4t)
be a subset of S such that each edge in S;; has an end-vertex in V; and another
end-vertex in V; with |S;;| = s;; > 0. By Lemma 2.7, we have

Lemma 2.8. Let F = K(p1,p2,p3,ps) be a complete 4-partite graph and let G =
F — S where S is a set of s edges in F. If S induces a matching in F, then

Q(G) =Q(F) - Z (pi —1)(pj — 1)sij + (;) — s12(813 + S14 + S23 + S24)

1<i<j<4

— 513(814 + 523 + S34) — S14(S24 + S34) — S23(524 + S34) — S24534

£y sy (f;)]

1<i<j<4 L keg{ij}
and
K(G)=K(F)— Y sijpspe+ (512531 + $13504 + 514523)-
i<jk<t
{i,75,k, 0} ={1,2,3,4}
Moreover,
s
max(Q(G)} = QUF) = st ~ D2~ 1) + 5] + ((1’2) - (g))

and

min{K(G)} = K(F) — sp3pa

if and only if each edge in S joins vertices in the same two partite sets of smallest
size in F. In particular, max{Q(G) — 2K (G)} is attained if and only if each edge
in S joins vertices in the same two partite sets of the smallest size in F.
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Proof. Note that G has induced C4 of Type 1, Type 2 or Type 3. Let Q1(G) (re-
spectively, Q2(G) and Q3(G)) be the number of induced Cy4 of Type 1 (respectively,

Type 2 and Type 3) in G. Observe that S = U S;; with s;; > 0. Hence,
1<i<j<4

w0-3% (3)(5)- 2 o-vm-vur 3 (3)

1<i<j<4 1<i<j<4

s
=Q(F) - Z (pi — 1)(pj — 1)sij + (2> — 512(513 + 514 + 523
1<i<j<4
+ So4 + S34) — $13(814 + S23 + S24 + S34) — S14(S23 + S24 + S34)
— 523(S24 + S34) — S524534.

We now find Q2(G). Since the number of 2-element subsets of Vj, is (Z;k>, we

have
HEEDY [Swz (172)]
1<i<j<4 L k¢ {i,j}

It is obvious that Q5(G) = s12534 + S13524 + S14523. Therefore,

Q(G) =Q(F) - Z (pi —1)(pj — V)sij + (;) — 512(513 + 514 + 523

1<i<j<4

+ S24) — S13(814 + S23 + S34) — S14(S24 + S34) — S23(S24 + S34)

—Spssat ) lsj 3 (Z’“)]

1<i<j<4 L k¢ {i,5}

Hence,

Q(G) < Q(F) — Z (pi = 1)(pj — V)sij + (;) + Z [Sij Z (Z;k)]

1<i<j<4 1<i<j<4 L k¢ {i,j}

with the equality holds if and only if S = S;; U Sy, for i < j, k < £ and {1, j,k,{} =
{1,2,3,4}. Now, observe that (p1—1)(p2a—1)s < (pi—1)(p;—1)sij+(Pr—1)(pe—1)Ske
and the equality holds if and only if S = S;; U Ske for ¢ < j, k < ¢ and {3, j, k, £} =
{1,2,3,4} when p; = py = p3 = p4, or S = Sy5 otherwise. Hence, max{Q(G)} is
attained if and only if S is a set of a possibility discussed above.

We now find K(G). Observe that each K4 subgraph in F' has at most two
edges in S. Let K,,(G) be the number of K4 subgraphs in F' that contains m edges
in S for m = 1,2. Hence, K(G) = K(F) — K1(G) + K2(G). Let v;v; denote an edge
in S such that v; € V; and v; € V. Then, the number of K4 subgraphs in F' that
contains v;v; is prpe where ¢ < j,k < £ and {3, j,k, ¢} = {1,2,3,4}. Hence,

Ki(G)= > siprpe.
i<jk<t
{i,5,k, 0} ={1,2,3,4}



258 G. C. Lau, Y. H. Peng

Observe that there is a one-to-one correspondence between the set of Type
3 induced C4 in G and the set of K4 subgraphs in F' that contain two edges in S.
Hence, K3(G) = Q3(G). It follows that

K(G)=K(F) - Z SijPkPe + (812834 + 813524 + S14823).
i< g k<e
{i,5,k, €} = {1,2,3,4}

Therefore,
K(G) > K(F)= Y sipipe
i<j k<2
{i,d,k, €} ={1,2,3,4}
with the equality holds if and only if s’ = 519834 + 513504 + 514823 = 0. Now,

observe that spsps > si12paps + S13p2pa + S14P2P3 + 523P1P4 + 524P1P3 + S34D1P2-
Hence, when s’ = 0, the equality holds if and only if S = S;; U Skr U Sy, where
(1,7) € {(1,2),(3,4)}, (k,0) € {(1,3),(2,4)} and (m,n) € {(1,4),(2,3)} when
P1 = P2 = P3 = P4, Or S = 819 otherwise. Hence, min{ K (G)} is attained if and only
if S is a set of a possibility discussed above. Consequently, max{Q(G) — 2K (G)}
is attained if and only if each edge in S joins vertices in the same two partite sets
of the smallest size in F. This completes the proof. O

3. CHARACTERIZATION

In this section, we shall characterize certain complete 4-partite graphs G =
K (p1,p2,ps,psa) according to the number of 5-independent partitions of G where

ps—p1 < 5.

Lemma 3.1. Let G = K(p1,p2,ps,ps) be a complete 4-partite graph such that
p1 + P2 + p3 + pa = 4p. Define 0(G) = (a(G,5) — 2P+ +4)/2P=2. Then

(i)
(ii)
(iii) 6(G)=2ifand only if G=K(p—1,p—L,p+1,p+1);

0(G) =0 if and only if G = K(p,p,p,p);

0(G) =1 if and only if G = K(p — 1,p,p,p + 1);

(iv) 6(G) :2% if and only if G = K(p—2,p,p+ 1,p+ 1);

(v) 6(G) =4 if and only if G = K(p—1,p— 1,p,p +2);

(vi) 0(@) :4% if and only if G=K(p—3,p+ 1,p+1,p+ 1);

(vii) 8(G) = 4% if and only if G = K(p—2,p,p,p+ 2);

(viii) 0(G) = 5% if and only if G = K(p—2,p—1,p+1,p+2);
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(ix) 0(G) :6% if and only if G = K(p—3,p,p+1,p+2);
(x) (G) =9 if and only if G = K(p—2,p — 2,p+2,p+2);
(xi) 9(G)=9% if and only if G = K(p—3,p—1,p+2,p+2);
(xii)) 0(G) =11 if and only if G=K(p—1,p—1,p—1,p+ 3);
(xiii) 0(G) = 11% if and only if G = K(p—2,p— 1,p,p + 3):
(xiv) 6(G) = 13 if and only if G = K(p— 2,p — 2,p+ 1,p + 3).

Proof. In order to complete the proof of the theorem, we first give a table about the
f-value of various complete 4-partite graphs with 4p vertices as shown in Table 1.

Table 1: Some complete 4-partite graphs with 4p vertices and their -values

G, (1<i<16) 0(G)[[G: (17 <i < 31) 0(Gy)
G1 = K(p,p,p,p) 0 ||[Gir=K@p—-4p+Lp+1lp+2) 8%
G:=K(pp—1,p,p,p+1) 1 =K(p—4,p,p+2,p+2) 10%
Gs=K(p— —-Lp+1Lp+1) 2 Gio=K{p—-4,pp+1,p+3) 14%
Gi=Kp—-2pp+1,p+1) ol o =Kp—2p—1,p—1,p+4) 26%
Gs=Kp—1p—1,pp+2) 4 m=K(p—2p—2pp+4) 27
Ge=K(p—2,p,p,p+2) 4% 2w=K{p-3,p—1,p,p+4) 27%
Gr=Kp-2,p—1,p+1,p+2) 5% Gazs=K(p—4,p,p,p+4) 28%
Gs=K(-3p+1lp+tLp+l) 4% 20=K(p-3p—2,p+2,p+3) 16%
Go=K({p-3,p,p+1,p+2) 6% Gis=K{p—-4,p—-1,p+2,p+3) 17%

=Kkp-1,p—1,p—1,p+3) | 11 w=K{p-3,p—-2,p+1,p+4) 282
Gui=Kp-2,p—1,p,p+3) 11% Gar=K{p-5p+1,p+2,p+2) 12%
Gi2=K(p—3,p,p0,p+3) 12% Gy =K({p—-5p,p+2,p+3) 18%
Gis=K(p—-2,p—2,p+2,p+2) 9 Gao=K{p-6p+2,p+2,p+2) 16?%2
Gu=K{p-3,p—1,p+2,p+2) 9% Gao=K({p-5p+1,p+1,p+3) 16%
Gs=Klp-2,p—2,p+1,p+3) | 13 Gs1=K(p—6,p+1,p+2,p+3) 20%
Gee=Kp-3,p—1,p+1,p+3) 13%
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By the definition of improvement, we have the following.
(i) G is the improvement of G2 with 0(G3) = 1;

(ii) Go is the improvement of G, G4, G5 and Gg with 0(Gs3) = 2, 0(G4) = 2 %,
8(G5) = 4 and 0(Cg) = 4 %;

(iii) Gj is the improvement of G4, G and Gy with 8(G4) = 2 % 0(Gs) = 4 and
0(G7) =5 %;

(iv) Gy is the improvement of Gg, G7, Gs and Gg with 8(Gg) = 4 %, 0(G7)=5 %,
0(Gs) =47 and 6(Go) =6 |;

(v) Gs is the improvement of Gg, G, Gio and Gy, with 8(G) = 4 % 0(G7) =5 %
0(G1o) = 11 and 0(G1y) = 11 %;

(vi) Gg is the improvement of G7, Gy, G11 and G129 with 8(G7) =5 %, 0(Gyg) =6 i,

H(Gll) = 11% and 9(G12) =12 %7

(Vii) G7 is the improvement of Gg, G11, G13, G14, G15 and G146 with G(Gg) =6 i,
9(Gry) = 11 % 0(Cr3) =9, 0(Gra) = 9 i 0(Chs) = 13 and 6(G1g) = 13 i;
(viii) Gs is the improvement of Gy and G17 with 0(Gg) = 6% and 6(G17) =8 %;

(iX) Gg is the improvement of Glz, G14, Glﬁ, G17, Glg and G19 with Q(Glg) =
12 1,6(G1a) =9, 0(Go) = 13, 0(G1r) =8 3, 0(Grs) = 10 £ and §(Gro) =

1
14
(x) Gyo is the improvement of G1; and Gog with 6(G11) = 11% and 0(Ga) =
1
2 5
(xi) Gy is the improvement of Gi2, G5, G1g, G20, G21 and Gog with 0(G1a) =
12 1, 0(G1s) = 13, 0(Gig) = 13 1, 0(Gao) = 26 3, 0(Gan) = 27 and 0(Gzz) =
1
27 1

(xii) Gig is the improvement of Gig, Gi1g, G2z and Gaz with 0(Gig) = 13%,

0(Go) = 14%7 0(Ga2) = 27% and 0(Ga3) = 28 é;
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(xiii) Gi3 is the improvement of G14, G15 and Gaq with 8(G14) =9 i, 0(Gy5) =13
and 9(G24) =16 %;

(xiv) Gi4 is the improvement of Gig, Gis, Gas and Gas with 0(Gig) = 13%,
0(Gis) =10 é’ 0(Gay) = 16% and 0(Ga5) = 17%;

(xv) G5 is the improvement of Gig, Ga1, Gos and Gag with 0(Gig) = 13%,
0(G21) =27, 0(Gag) = 16% and 0(Gag) = 28 %;

(xvi) Gig is the improvement of Gig, Gas, Gy and Gag with 0(Grg) = 14%7

1 1 1
9(G25) =17 g, 9(G27) =12 E and H(Ggg) =18 E;

(xvil) Go7 is the improvement of Gag, Gag, G3g and Gz with 0(Gag) = 18 11_6’
1 1 1
Q(Ggg) =16 @’ 0(G30) =16 E and 9(G31) =20 @

Hence, by Lemma 2.4 and the above arguments, we know that (i) to (xiv)
hold. The proof is thus complete. O

Similar to the proof of Lemma 3.1, we obtain Lemmas 3.2 to 3.4.

Lemma 3.2. Let G be a complete 4-partite graph with 4p + 1 vertices. Define
0(G) = ((G,5) — 2P~ —2PT1 + 4)/2P=2 Then

(i) 0(G) =0 if and only if G = K(p,p,p,p + 1);
(ii) (G)=1if and only if G=K(p—1,p,p+ 1,p+ 1);
(iii) 0(G) :2% if and only if G = K(p—2,p+ L,p+1,p+1);
(iv) 0(G) =3 if and only if G = K(p — 1,p,p,p + 2);
(v) 0(G) =4 if and only if G=K(p—1,p—1,p+1,p+2);

(vi) 9(G)=4% if and only if G=K(p—2,p,p+ 1,p+2);
(vii) 0(G):6i if and only if G = K(p—3,p+ Lp+1,p+2);
(viii) 9(G)z7% if and only if G=K(p—2,p— 1,p+2,p+2);

(ix) 6(G) :8% if and only if G = K(p— 3,p,p+ 2,p + 2);

(x) 0(G)=10if and only if G=K(p—1,p—1,p,p+ 3);
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(xi) 0(G) = 10% if and only if G = K(p —2,p,p,p + 3);

(xii) 0(G) = 11% if and only if G = K(p—2,p—1,p+1,p+3);
(xiii)) 0(G) =15 if and only if G=K(p—2,p—2,p+2,p+ 3);

(xiv) (G) =25 if and only if G=K((p—1,p—1,p—1,p+4).

Lemma 3.3. Let G be a complete 4-partite graph with 4p + 2 vertices. Define
0(G) = (a(G,5) — 2P — 20T 4 4) /2P=2. Then

(i) 6(G) =0 if and only if G = K(p,p,p+ 1,p + 1);

(ii) (G)=1ifand only if G=K(p—1,p+ 1, p+1,p+1);
(iii) 6(G) =2 if and only if G = K(p,p,p,p + 2);
(iv) 0(G) =3 if and only if G=K(p—1,p,p+ 1,p+2);

(v) 8(C) :4% if and only if G = K(p—2,p+1L,p+1,p+2);
(vi) 0(G) =6 if and only if G=K(p—1,p—1,p+ 2,p + 2);

(vii) 0(Q) =6% if and only if G = K(p — 2,p,p + 2,p + 2);

(viii) 0(G) :8% if and only if G = K(p—3,p+1,p+2,p+2);
(ix) 0(G) =9 if and only if G = K(p — 1,p,p,p+ 3);
(x) 0(G)=10if and only if G=K(p—1,p—1,p+1,p+ 3);

(xi) 0(G) = 10 % if and only if G = K(p—2,p,p+1,p+3);

(xii) 0(G) = 13% if and only if G = K(p—2,p—1,p+2,p+3);
(xiil)) 0(G) =21 if and only if G=K(p—2,p—2,p+ 3,p+ 3);

(xiv) 0(G) =24 if and only if G=K(p—1,p—1,p,p+4).

Lemma 3.4. Let G be a complete 4-partite graph with 4p + 3 vertices. Define
0(G) = (a(G,5) — 2071 —2p — 2P+1 4 4) /2P~ 1. Then

(i) 0(G) =0 if and only if G = K(p,p+ 1,p+ 1,p+ 1);
(ii) (G) =1 if and only if G = K(p,p,p+ 1,p + 2);

(iii) 0(G) = 1% if and only if G = K(p—1,p+1,p+1,p+2);
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(iv) 6(G) :2% if and only if G = K(p—1,p,p + 2,p + 2);

(v) 9(G) :33 if and only if G=K(p—2,p+ 1,p+2,p+2);
(vi) 0(G) =4 if and only if G = K(p,p,p,p + 3);

(vil) 0(Q) :4% if and only if G = K(p—1,p,p+ 1,p+ 3);
(viii) 6(Q) :5é if and only if G=K(p—3,p+2,p+2,p+ 2);

(ix) 6(G) :53 if and only if G=K(p—2,p+ 1,p+ 1,p+ 3);
(x) 0(G)=6ifand only if G=K(p—1,p—1,p+2,p+ 3);

(xi) 0(@) :6% if and only if G=K(p—2,p,p+ 2,p+ 3);
(xii) 0(Q) :92 if and only if G=K(p—2,p—1,p+3,p+ 3);

(xiii) 0(G) = 11% if and only if G = K(p—1,p,p,p+4);

(xiv) 0(G) =12 if and only if G=K(p—1,p—1,p+ 1,p + 4).

4. CHROMATICALLY CLOSED 4-PARTITE GRAPHS

In this section, we deduce the y-closed families of graphs obtained from the
graphs in Lemma 3.1 to Lemma 3.4 with a set S of s edges deleted.

Lemma 4.1. The family of graphs K~°(p1, p2, p3, pa) where p1 +p2 +ps+ps = 4p,
pa—p1 <5 and py > s+ 3 is x-closed.

Proof. By Lemma 3.1, there are 14 cases to consider. Denote each graph in
Lemma 3.1 (i), (ii), ..., (xiv) by Gi1, Ga,...,G14, respectively. Suppose H ~
G; — S. It suffices to show that H € {G; — S}. By Lemma 2.1, we know there
exists a complete 4-partite graph F' = K(w,x,y,2) such that H = F — S’ with
IS/ =¢" =e(F)—e(G)+s>0.

Case i. Let G = G; with p > s+ 2. In this case, H ~ G — S € K~*(p,p, p,p). By
Lemma 2.5,

a(G —5,5) =a(G,5) + as(G — S) with s < a5(G - S5) <2° -1,
a(F —8',5) = a(F,5) + as(F —S") with 0 < s < as(F — 5.
Hence,

al(F —8',5) —a(G - 8,5) = a(F,5) — a(G,5) + as(F — 5') — as(G — 9).
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By definition, a(F, 5) — a(G,5) = 2P72(0(F) — 6(G)). By Lemma 3.1, 0(F) >
0. Suppose 0(F') > 0, then

a(F —8',5) —a(G—8,5) >2""2 + a5(F - 5') —as(G - S
(
>2°4a5(F—5)—2°+1>1,

contradicting a(F —5’,5) = a(G—S5,5). Hence, (F) =0 and so F 2 G and s = 5.
Therefore, H € KX~%(p, p, p, p).

Case ii. Let G = Gy with p > s+2. In thiscase, H ~ G—S € K~*(p—1,p,p,p+1).
By Lemma 2.5,

a(G —8,5) = a(G,5) + a5 (G — S) with s < as(G - 5) <2° -1,
a(F —5',5) = a(F,5) + as(F —S') with 0 < s < as(F — 5.
Hence,
a(F —5'5) —a(G —8,5) = a(F,5) — a(G,5) + as(F — §') — a5(G - S).

By definition, a(F,5) — a(G,5) = 2P=2(0(F) — 6(G)). Suppose §(F) # 0(G).
We consider two subcases.

Subcase a. §(F) < 0(G). By Lemma 3.1, F = Gy and so H = G1—5" € {G1—5"}.
However, G — S & {G1 — 5’} since {G1 — S’} is x-closed, a contradiction.

Subcase b. §(F) > 6(G). By Lemma 3.1, o(F,5) — a(G,5) > 2P~2. So,
a(F - 8',5) —a(G —8,5) > 2P 2 4 a5(F — S") — as(G — S)
>2°+a5(F—5)—2°+1>1,

contradicting a(F — S’,5) = (G — S,5). Hence, §(F) —0(G) =0and so FF = G
and s = s’. Therefore, H € K~%(p— 1,p,p,p + 1).

Using Table 1, we can prove (iii) to (xiv) in a similar way. This completes
the proof. O

Similarly, we can prove Lemmas 4.2 to 4.4.
Lemma 4.2. The family of graphs K=°(p1,p2,p3,p4) where p1 + pa + p3 + pa
=4dp+ 1, ps —p1 <5 and p1 > s+ 4 is x-closed.

Lemma 4.3. The family of graphs K=°(p1,p2,p3,p4) where p1 + pa + p3 + pa
=4dp+2, py—p1 <5 and p; > s+ 5 is x-closed.

Lemma 4.4. The family of graphs K=°(p1,p2,p3,p4) where p1 + pa + p3 + pa
=4dp+3, ps —p1 <5 and p1 > s+ 2 is x-closed.
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5. CHROMATICALLY UNIQUE 4-PARTITE GRAPHS

The following two Lemmas give several families of chromatically unique com-
plete 4-partite graphs having 4p vertices with a set S of s edges deleted where the
deleted edges induce a star K(1,s) and a matching sK», respectively.

Lemma 5.1. The graphs K, ") (p1,pa,ps.ps) where p1 + pa + ps + pa = 4p,
pa—p1 <Handp; >s+3 arex—umqueforl <i#j<A4

Proof. By Lemma 3.1, there are 14 cases to consider. Denote each graph in
Lemma 3.1 (i), (ii), ..., (xiv) by G1, Ga, ..., G14, respectively. The proofs for each
graph obtained from G; (i = 1,2,...,14) are similar, so we only give the detailed
proof for the graphs obtained from G5 below.

By Lemma 2.5 and 4.1, we know that K, ; (p— Lp,p,p+1) ={K, JK(l %)

(p— 1L,p,p,p+1)|(i,5) € {(1 2),(2,1),(1,3), (3 1),(2,3),(3 2)}} is x-closed for
p > s+ 2. Note that

(p—1,p,p,p+1))
t(K K ) p—1,p,p,p +1))
H(Kqs )
( (» )

( K(1,s) t(G2) —2p — 1 for (i,7) € {(1,2),(2,1)},

(G2)

t(G2) - 2]7 for (7'7]) € {(174)a (47 1)}’,
t(G2) — 2p,

(G2)

p—Lppp+1

(K, S (p— 1p,p,p +1)) = H(G2) — 2p+ 1 for (i,5) € {(2,4), (4,2)}.
K(L,s) —K(1,9)

By Lemmas 2.2 and 2.6, we conclude that U(K” (p—1,p,p,p+1)) #£ o (KJ ;
K(l s)

(p—l,p,p,p—i—l)) for each (i,7) € {(1,2),(1,4),(2,4)}. We now show that Ky
(p—1,p,p,p+1) A4 K;J.K(l’s)(p —1,p,p,p+1) for (i,5) € {(1,4), (4,1)}. We have

Q£ 0= L) =@ - -1+ (5)+ (P51 + (73 ).

k(s s

QUK (p— 1p.pp+1)) = Q(Ga) — plp—2) + (2) + z@
for (i,7) € {(1,4), (4, 1)},
with
QUEGE M (p—Lp,pp+1)) — QK (p—1,p.p,p+1)) =0,

and that

K(K{,f(l’s)(p —Lp,p,p+1)) =K(Gs)—s(p—1)(p+1),

K(KZJK(LS)(P —1Lp,p,p+1)) = K(G2) — sp? for (i, §) € {(1,4), (4,1)},
with

KKy " p-1ppp+1) - KK " p-1ppp+1) =s
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This means 2K(K;].K(1’s)(p -1ppp+1))— Q(K;]»K(l’s)(p —1,p,p,p+1))
+ 2K(Ki§<(1’s)(p —1Lppp+1))— Q(Kif(l’s)(p —1,p,p,p+ 1)), contradicting

Lemma 2.1. Hence, K;J-K(l’s)(p — 1,p,p,p+ 1) where p > s + 2 is y-unique for

1 <14 # j < 4. The proof is thus complete. O

Lemma 5.2. The graphs K1 5" (p1, p2, p3, pa) where pi+pa2+ps+ps = 4p, pa—p1 <
5 and p1 > s+ 3 are x-unique.

Proof. By Lemma 3.1, there are 14 cases to consider. Denote each graph in
Lemma 3.1 (i), (ii), ..., (xiv) by Gi, Ga,...,G14, respectively. For a graph
K(w,z,y,2), let S = {e1,€2,...,€5} be a set of s edges in F(K(w,z,y,z)) and
let t(€;) denote the number of triangles containing ¢; in K(w,x,y, z). The proofs
for each graph obtained from G; (i = 1,2,...,14) are similar, so we only give the
proofs for the graphs obtained from G2 and G3 as follows.

Suppose H ~ G = Ki;KQ(p— 1,p,p,p+1) for p> s+ 2. By Lemma 4.1 and
Lemma 2.1, H € K*(p— 1,p,p,p+ 1) and a5(H) = a5(G) =s. Let H =F - S
where FF = K(p —1,p,p,p + 1). Clearly, ¢(¢;) < 2p+ 1 for each ¢; € S. So,

(1) t(H) = t(F) = s(2p + 1)

with equality holds only if t(¢;) = 2p + 1 for all ¢; € S. Since t(H) = t(G) =
t(F) — s(2p+ 1), equality in (1) holds with t(e;) = 2p + 1 for all ¢; € S. Therefore,
each edge in S has an end-vertex in V7 and another end-vertex in V5 or in V3.
Moreover, S must induce a matching in F. Otherwise, equality in (1) does not hold

or as(H) > 5. By Lemma 238, Q(G) — 2K(G) = Q(F) — s(p —2)(p — 1) + (;)

+s {(g) + (p—; 1)} —2[K(F)—sp(p+1)] > Q(H)—2K(H) and the equality holds
if and only if s = s1; (2 < j < 3). Hence, (S) = sKy and H = G.

Now, suppose H ~ G = Kl_jK?(p —Lp—Lp+1,p+1) forp > s+ 3.
By Lemma 4.1 and Lemma 2.1, H € K %(p— Lip—1,p+ 1,p+ 1) and a5(H)
= a5(G) = s. Let H=F — S where F = K(p—1,p—1,p+ 1,p+ 1). Clearly,
t(e;) < 2p+ 2 for each ¢; € S. So,

(2) tH) > t(F) = s(2p +2)

with equality holds only if t(¢;) = 2p + 2 for all ¢; € S. Since t(H) = t(G) =
t(F) — s(2p + 2), equality in (2) holds with t(e;) = 2p + 2 for all ¢; € S. Therefore,
each edge in S has an end-vertex in V7, and another end-vertex in V5. Moreover,

S must induce a matching in F. Otherwise, as(H) > s. Hence, (S) = sK; and
H = G. The proof is thus complete. O

Similarly to the proofs of Lemmas 5.1 and 5.2, we can prove the following six
lemmas.

Lemma 5.3. The graphs K;]-K(l’s) (p1, P2, P3,p4) where p1 + pa +ps+ps = 4p+1,
pe—p1 <5 and p1 > s+ 4 are x-unique for 1 <i # j < 4.
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Lemma 5.4. The graphs K;;Kz (p1,p2,D3,p4) where p1 + P2 +p3 +ps = 4p + 1,
ps—p1 <5 and p1 > s+ 4 are x-unique.

Lemma 5.5. The graphs K;]-K(l’s) (p1,D2, P3, P4) where p1 + pa+ ps +ps = 4p + 2,
ps—p1 <5 and p1 > s+ 5 are x-unique for 1 <i#j <4

Lemma 5.6. The graphs K; 5"*(p1,p2,ps,ps) where py + p2 + ps + pa = 4p + 2,
ps—p1 <5 and p1 > s+ 5 are x-unique.

Lemma 5.7. The graphs K;]-K(l’s) (p1, P2, P3,Pa) where p1 + pa + p3 +pg = 4p+ 3,
ps—p1 <5 and p1 > s+ 2 are x-unique for 1 <i # j < 4.

Lemma 5.8. The graphs K;ng (p1, P2, P3,P4) where p1 + po + p3 + pg = 4p + 3,
pa—p1 <5 and p1 > s+ 2 are x-unique.

We thus have our main theorem as follows.

Theorem 5.1. The graphs KiTJK(l’S)(pl,pg,pg,pél) where 1 < i # j < 4, and
KI_EKQ (p1,p2,p3,p4) are x-unique for integers py —p1 <5 and p1 > s+ 5.

Note that our results significantly improve the condition of Theorems 6.5.2
to 6.5.4 in [9] especially when s is “sufficiently” large.
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