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ON SPECTRAL RADIUS OF THE DISTANCE MATRIX

Zhongzhu Liu

We characterize graphs with minimal spectral radius of the distance matrix

in three classes of simple connected graphs with n vertices: with fixed vertex

connectivity, matching number and chromatic number, respectively.

1. INTRODUCTION

Let G be a simple connected graph with vertex set V (G) = {v1, v2, . . . , vn}.
The distance matrix of G is defined as the n×n matrix D(G) = (dij) , where dij is
the distance (i.e., the number of edges of a shortest path) between vertices vi and
vj in G [1]. Denoted by ρ(G) the spectral radius (the largest eigenvalue) of D(G).
Properties for eigenvalues of the distance matrix and especially for ρ may be found
in e.g., [2, 3, 4, 5, 6].

In this paper, we characterize graphs with minimal spectral radius of the
distance matrix in three classes of simple connected graphs with n vertices: with
fixed vertex connectivity, matching number and chromatic number, respectively.

2. PRELIMINARIES

The following lemma is an immediate consequence of Perron-Frobenius Theorem.

Lemma 1. Let G be a connected graph with u, v ∈ V (G) and uv 6∈ E(G). Then

ρ(G) > ρ(G+ uv).

Let Ja×b be the a × b matrix whose entries are all equal to 1 and In be the
n× n unit matrix. Let J = Jn×n.
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Let NG(v) be the neighborhood of the vertex v of G. Let G1 ∪ · · · ∪ Gk be
the vertex-disjoint union of the graphs G1, · · · , Gk (k ≥ 2), and G1 ∨ G2 be the
graph obtained from G1 ∪ G2 by joining each vertex of G1 to each vertex of G2.
Let x(G) = (x1, x2, . . . , xn)

T be a unit eigenvector of D(G) corresponding to ρ(G).
Then

(1) ρ(G)xi =
∑

vj∈V (G)

dijxj .

Lemma 2. Let G be a connected graph, x(G) = (x1, x2, . . . , xn)
T and vr, vs ∈

V (G). If NG(vr) \ {vs} = NG(vs) \ {vr}, then xr = xs.

Proof. From Eq. (1), we have

drsxs +
∑

vt∈V (G)\{vr,vs}

drtxt = ρ(G)xr, drsxr +
∑

vt∈V (G)\{vr,vs}

dstxt = ρ(G)xs.

Since NG(vr) \ {vs} = NG(vs) \ {vr}, we have drt = dst for vt ∈ V (G) \ {vr, vs}.
Then

(ρ(G) + drs)xr = drs(xr + xs) +
∑

vt∈V (G)\{vr,vs}

drtxt

= drs(xr + xs) +
∑

vt∈V (G)\{vr,vs}

dstxt = (ρ(G) + drs)xs,

and thus xr = xs.

3. GRAPHS WITH GIVEN VERTEX CONNECTIVITY

Let G = Ks ∨ (Kn1
∪Kn2

), where s+ n1 + n2 = n. By Lemma 2, entries of
x(G) have the same value, say y0, for the vertices in V (Ks), y1 for the vertices in
V (Kn1

) and y2 for the vertices in V (Kn2
).

Lemma 3. In the setup as above, if n2 > n1 + 1, then (n2 − 1)y2 − n1y1 > 0.

Proof. Let ρ = ρ(G). From Eq. (1), we have

sy0 + (n1 − 1)y1 + 2n2y2 = ρy1,

sy0 + 2n1y1 + (n2 − 1)y2 = ρy2.

Then

n2y2 − n1y1 = (ρ+ 1) (y1 − y2),

y1/y2 = (ρ+ n2 + 1)/(ρ+ n1 + 1),
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which implies that

(n2 − 1)y2 − n1y1 = (ρ+ 1)(y1 − y2)− y2

= y2

[

(ρ+ 1)
y1
y2
− (ρ+ 2)

]

= y2

[

(ρ+ 1)
ρ+ n2 + 1

ρ+ n1 + 1
− (ρ+ 2)

]

=
y2

ρ+ n1 + 1
[(ρ+ 1)(n2 − n1 − 1)− n1] .

Note that n2 − n1 ≥ 2 and by Lemma 1, ρ+ 1 ≥ ρ(Kn) + 1 = n > n1. Then

(ρ+ 1)(n2 − n1 − 1)− n1 > n1(n2 − n1 − 1)− n1 = n1(n2 − n1 − 2) ≥ 0.

Thus (n2 − 1)y2 − n1y1 > 0.

Recall that the vertex connectivity of the graph G is the minimum number
of vertices whose deletion yields a disconnected graph.

Theorem 1. Let G be an n-vertex connected graph with vertex connectivity s, where

1 ≤ s ≤ n − 2. Then ρ(G) ≥ ρ (Ks ∨ (K1 ∪Kn−1−s)) with equality if and only if

G = Ks ∨ (K1 ∪Kn−1−s).

Proof. Let G be a graph with minimal spectral radius of D(G) in the class of
n-vertex connected graphs with vertex connectivity s. By Lemma 1, G = Ks ∨
(Kn1

∪Kn2
), for n2 ≥ n1 ≥ 1 and s+ n1 + n2 = n.

Suppose that n1 > 1. Let G1 = Ks ∨ (Kn1−1 ∪ Kn2+1) and by Lemma 2,
x(G1) can be written as

x(G1) = (y0, . . . , y0
︸ ︷︷ ︸

s

, y1, . . . , y1
︸ ︷︷ ︸

n1−1

, y2, . . . , y2
︸ ︷︷ ︸

n2+1

)T .

Then, by minimality argument we have

xT (G1)D(G1)x(G1) = ρ(G1) ≥ ρ(G) ≥ xT (G1)D(G)x(G1),

i.e.,

(2) xT (G1)D(G1)x(G1)− xT (G1)D(G)x(G1) ≥ 0.

Note that

D(G) = J − In +





0 0 0
0 0 Jn1×n2

0 Jn2×n1
0



 ,

D(G1) = J − In +





0 0 0
0 0 J(n1−1)×(n2+1)

0 J(n2+1)×(n1−1) 0



 .
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By Lemma 3, we have

xT (G1) (D(G)−D(G1))x(G1)

= xT (G1)







0 0 0 0
0 0 −J(n1−1)×1 0
0 −J1×(n1−1) 0 J1×n2

0 0 Jn2×1 0







x(G1)

= xT (G1)







0
−y2J(n1−1)×1

n2y2 − (n1 − 1)y1
y2Jn2×1







= 2 [((n2 + 1)− 1) y2 − (n1 − 1)y1] y2 = 2(n2y2 − n1y1 + y1)y2 > 0,

which is a contradiction to (2).

Thus n1 = 1, and therefore G = Ks ∨ (K1 ∪Kn−1−s).

4. GRAPHS WITH GIVEN MATCHING NUMBER

Let G = V (Ks ∨ (Kn1
∪Kn2

∪ · · · ∪Knt
)), where s+

t∑

i=1

ni = n. By Lemma

2, entries of x(G) have the same value, say y0, for the vertices in V (Ks), and yi for
the vertices in V (Kni

), where i = 1, 2, · · · , t.

In a similar way as Lemma 3, we have

Lemma 4. In the setup as above, if n2 > n1 + 1, then (n2 − 1)y2 − n1y1 > 0.

A component of a graph is said to be even (odd) if it has an even (odd)
number of vertices. Let G be a graph with n vertices. Let o(G) be the number of
odd components of G. By the Tutte-Berge formula [8, 9],

n− 2m = max {o(G−X)− |X| : X ⊂ V (G)} .

The matching number of the graph G is the number of edges in a maximum
matching, denoted bym(G) and if the graphG is understood, we omit the argument
G and simply write m.

Theorem 2. Let G be an n-vertex connected graphs with matching number m,

where 2 ≤ m ≤
⌊

n

2

⌋

.

(i) If m =
⌊

n

2

⌋

, then ρ(G) ≥ n− 1 with equality if and only if G = Kn;

(ii) If 2 ≤ m ≤
⌊

n

2

⌋

− 1, then ρ(G) ≥ ρ
(
Km ∨Kn−m

)
with equality if and only

if G = Km ∨Kn−m.
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Proof. Let G be a graph with minimal spectral radius of D(G) in the class of
n-vertex connected graphs with matching number m. By the Tutte-Berge formula,
there is a vertex subset X0 ⊂ V (G) such that n − 2m = max{o(G − X) − |X| :
X ⊂ V (G)} = o(G−X0)− |X0|. For convenience, let |X0| = s and o(G−X0) = k.
Then n− 2m = k − s.

Suppose that s = 0. Then G −X0 = G and n − 2m = k ≤ 1. If k = 0, then

m =
n

2
, and if k = 1, then m =

n− 1

2
. In both cases, we have by Lemma 1 that

G = Kn.

Suppose in the following that s ≥ 1. Then k ≥ 1. Let G1, G2, . . . , Gk be all
odd components of G−X0. If G−X0 has an even component, then by adding an
edge to G between a vertex of an even component and a vertex of an odd component
of G−X0, we obtain a graph G′, for which n−2m(G′) ≥ o(G′−x0) = o(G−X0), and
then m(G′) = m(G). By Lemma 1, ρ(G) > ρ(G′), it is a contradiction to the choice
of G. Thus G−X0 does not have an even component. Similarly, G1, G2, . . . , Gk and
the subgraph induced by X0 are all complete, and any vertex of Gi (i = 1, . . . , k)
is adjacent to every vertex in X0. Thus G = Ks ∨ (Kn1

∪Kn2
∪ . . . ∪Knk

).

First, we show that G −X0 has at most one odd component whose number
of vertex is more than one. Assume that n2 ≥ n1 ≥ 2. Let G1 = Ks ∨ (Kn1−1 ∪
Kn2+1 ∪Kn3

. . . ∪Knk
) and by Lemma 2, x(G1) may be written as

x(G1) = (y0, ..., y0
︸ ︷︷ ︸

s

, y1, . . . , y1
︸ ︷︷ ︸

n1−1

, y2, . . . , y2
︸ ︷︷ ︸

n2+1

, y3, . . . , y3
︸ ︷︷ ︸

n3

, . . . , yk, . . . , yk
︸ ︷︷ ︸

nk

)T .

Then, by minimality argument we have

xTD(G1)x = ρ(G1) ≥ ρ(G) ≥ xTD(G)x,

i.e.,

(3) xT (G1)D(G1)x(G1)− xT (G1)D(G)x(G1) ≥ 0.

Note that

D(G) = J − In +









0 0 0 0 0 0
0 0 Jn1×n2

Jn1×n3
· · · Jn1×nt

0 Jn2×n1
0 Jn2×n3

· · · Jn2×nt

0 Jn3×n1
Jn3×n2

0 · · · Jn3×nt

· · · · · · · · · · · · · · · · · ·









.

By Lemma 4, we have

xT (G1) (D(G)−D(G1))x(G1)

= xT (G1)









0 0 0 0 0
0 0 −J(n1−1)×1 0 0
0 −J1×(n1−1) 0 J1×n2

0
0 0 Jn2×1 0 0
0 0 0 0 0









x(G1)
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= xT (G1)









0
−y2J(n1−1)×1

n2y2 − (n1 − 1)y1
y2Jn2×1

0









= 2(n2y2 − n1y1 + y1)y2 > 0,

which is a contradiction to (3). Thus G−X0 has at most one odd component whose
number of vertex is more than one.

Now, we show that G does not have the odd component with number of ver-
tices greater than 1. By contradiction, suppose that G = Ks∨ (Kk−1∪Kn−s−k+1),
where n ≥ s + k. Let n1 = n − s − k + 1 and G2 = Ks+1 ∨ (Kk−1 ∪ Kn1−1), by
Lemma 2, x(G2) may be written as

x(G2) = (y0, ..., y0
︸ ︷︷ ︸

s+1

, y1, . . . , y1
︸ ︷︷ ︸

n1−1

, y2, y3, . . . , yk)
T .

Then, by minimality argument we have

xT (G2)D(G2)x(G2) = ρ(G2) ≥ ρ(G) ≥ xT (G2)D(G)x(G2),

i.e.,

(4) xT (G2)D(G2)x(G2)− xT (G2)D(G)x(G2) ≥ 0.

Note that

D(G) = J + In +





0 0 0
0 0 Jn1×k

0 Jk×n1
Jk×k − Ik



 .

Then we have

xT (G2) (D(G)−D(G2))x(G2) = xT (G2)







0 0 0
0 0 J1×k

0 0 0
0 Jk×1 0







x(G2) > 0,

which is a contradiction to (4), thus G = Kn−k ∨Kk = Km ∨Kn−m.

5. GRAPHS WITH GIVEN CHROMATIC NUMBER

Let G = Kn1,n2,...,nr
, where

r∑

i=1

ni = n and ni > 0. By Lemma 2, entries of

x(G) have the same value, say yi, for vertices in Vi (i = 1, 2, . . . , r), where Vi is a
vertex partition and |Vi| = ni.

Lemma 5. In the setup as above, ni > nj if and only if yi > yj and ni = nj if

and only if yi = yj .
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Proof. Let ρ = ρ(G). From Eq. (1), we have

r∑

k=1

nkyk + (ni − 2)yi = ρyi,

r∑

k=1

nkyk + (nj − 2)yj = ρyj .

Then
r∑

k=1

nkyk

yi

+ (ni − 2) =

r∑

k=1

nkyk

yj

+ (nj − 2),

i.e.,

ni − nj =
r∑

k=1

nkyk

(
1

yj

−
1

yi

)

,

which implies that
ni > nj ⇔ yi > yj ,
ni = nj ⇔ yi = yj ,

as desired.

The chromatic number of a graph G is the smallest number of colors needed
to color the vertices of G such that any two adjacent vertices have different colors.
A subset of vertices assigned to the same color is called a color class, every such class
forms an independent set. The Turán graph Tn,r is a complete r-partite graph on n
vertices for which the numbers of vertices of vertex classes are as equal as possible.

Theorem 3. Let G be an n-vertex connected graph with chromatic number r, where

2 ≤ r ≤ n− 1. If G 6= Tn,r, then ρ(G) > ρ(Tn,r).

Proof. Let G be the graph with minimal spectral radius of D(G) in the class of
n-vertex connected graph with chromatic number r. Then V (G) can be partitioned

into r independent sets V1, V2, . . . , Vr, where |Vi| = ni (i = 1, 2, . . . , r) and
r∑

i=1

ni =

n. By Lemma 1, G = Kn1,n2,...,nr
.

Suppose that G is not the Turán graph. Then there exist i, j such that
|ni − nj | > 1. Suppose without loss of generality that n2 − 1 > n1. Let G1 =
Kn1+1,n2−1,n3,...,ns

and by Lemma 2, x(G1) may be written as

x(G1) = (y1, . . . , y1
︸ ︷︷ ︸

n1+1

, y2, . . . , y2
︸ ︷︷ ︸

n2−1

, y3, . . . , y3
︸ ︷︷ ︸

n3

. . . , yr, . . . , yr
︸ ︷︷ ︸

nr

)T .

Then, by minimality argument we have

xT (G1)D(G1)x(G1) = ρ(G1) ≥ ρ(G) ≥ xT (G1)D(G)x(G1),
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i.e.,

(5) xT (G1)D(G1)x(G1)− xT (G1)D(G)x(G1) ≥ 0.

Note that

D(G) = J − In +







Jn1×n1
− In1

0 0 0
0 Jn2×n2

− In2
0 0

0 0 Jn3×n3
− In3

0
· · · · · · · · ·







.

Then, by Lemma 5

xT (G1)(D(G)−D(G1))x(G1)

= xT (G1)







0 −Jn1×1 0 0
−J1×n1

0 J1×(n2−1) 0
0 J(n2−1)×1 0 0
0 0 0 0







x(G1)

= xT (G1)







−y1Jn1×1

(n2 − 1)y2 − n1y1
y2J(n2−1)×1

0







= y1[(n2 − 1)y2 − n1y1] + (n2 − 1)y2(y2 − y1) + y1[(n2 − 1)y2 − n1y1]

= (n2 − 1)y 2
2 + (n2 − 1)y1y2 − 2n1y

2
1 > 0,

which is a contradiction to (5), and thus G is the Turán graph Tn,r.
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