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ON SPECTRAL RADIUS OF THE DISTANCE MATRIX

Zhongzhu Liu

We characterize graphs with minimal spectral radius of the distance matrix
in three classes of simple connected graphs with n vertices: with fixed vertex
connectivity, matching number and chromatic number, respectively.

1. INTRODUCTION

Let G be a simple connected graph with vertex set V(G) = {v1,va,...,v,}.
The distance matrix of G is defined as the n x n matrix D(G) = (d;;) , where d;; is
the distance (i.e., the number of edges of a shortest path) between vertices v; and
v; in G [1]. Denoted by p(G) the spectral radius (the largest eigenvalue) of D(G).
Properties for eigenvalues of the distance matrix and especially for p may be found
ineg., [2, 3, 4, 5, 6].

In this paper, we characterize graphs with minimal spectral radius of the
distance matrix in three classes of simple connected graphs with n vertices: with
fixed vertex connectivity, matching number and chromatic number, respectively.

2. PRELIMINARIES

The following lemma is an immediate consequence of Perron-Frobenius Theorem.

Lemma 1. Let G be a connected graph with u,v € V(G) and uwv ¢ E(G). Then
p(G) > p(G + uwv).

Let Juxp be the a x b matrix whose entries are all equal to 1 and I,, be the
n X n unit matrix. Let J = J,, xn-
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Let N¢(v) be the neighborhood of the vertex v of G. Let Gy U --- U Gy, be
the vertex-disjoint union of the graphs G, -+, Gy (k > 2), and G V G2 be the
graph obtained from G; U G2 by joining each vertex of G; to each vertex of Gs.
Let 2(G) = (21,22, ..,7,)T be a unit eigenvector of D(G) corresponding to p(G).
Then

(1) p(Gzi =Y dijzj.

v; EV(G)

Lemma 2. Let G be a connected graph, x(G) = (z1,22,...,7,)" and v,,vs €

V(G). If Ng(v) \ {vs} = Ng(vs) \ {v}, then z, = x5.

Proof. From Eq. (1), we have

drsvs + Z drywy = P(G)fﬂm drsTr + Z dgyzs = p(G)xs
v €V (G)\{vr,vs} v €V (G)\{vr,vs}

Since Ng(v.) \ {vs} = Ng(vs) \ {v,}, we have d,y = dg for v, € V(G) \ {v,, vs}.
Then

(p(G) + drs)xr = drs(xr + xs) + Z drtl't
v €EV(G)\{vr,vs}

=dps(trt o)+ Y dawe = (p(G) + dys)s,
v: €V (G)\{vr,vs}

and thus z, = z,. O

3. GRAPHS WITH GIVEN VERTEX CONNECTIVITY

Let G = K,V (K,, UK,,), where s + ny + na = n. By Lemma 2, entries of
2(G) have the same value, say yo, for the vertices in V(Ky), y; for the vertices in
V(Kp,,) and ys for the vertices in V(K,,).

Lemma 3. In the setup as above, if no > nq + 1, then (ng — 1)ys — niy; > 0.
Proof. Let p = p(G). From Eq. (1), we have

syo + (n1 — )y1 + 2n2y2 = py1,
5y0 + 2n1y1 + (n2 — 1)ya = pyo.

Then

noy2 —niyr = (p+1) (y1 — y2),
Y1/y2 = (p+n2+1)/(p+n1+1),
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which implies that
(n2 — Dya —nmay1 = (p+ 1) (y1 — y2) — 2

e |+ D%~ (p+2)

p+ng+1
= +1)——————(p+2
yz[(ﬂ )p+n1+1 (p )]
Y2
=2 )(ng —ny — 1) — n4].
p+n1+1[(ﬂ+ )(n2 —ny —1) —ny]

Note that no —ny > 2 and by Lemma 1, p+ 1 > p(K,,) +1 =n > ny. Then
(p+1)(n2—n1—1)—n1>n1(n2—n1—1)—n1znl(ng—nl—Z)ZO.
Thus (ny — 1)y2 —n1y1 > 0. O

Recall that the vertex connectivity of the graph G is the minimum number
of vertices whose deletion yields a disconnected graph.

Theorem 1. Let G be an n-vertex connected graph with vertex connectivity s, where
1<s<n-—2 Then p(G) > p(KsV (K1 UK, _1_5)) with equality if and only if
G=K,V (K1 UK, 1_s).

Proof. Let G be a graph with minimal spectral radius of D(G) in the class of
n-vertex connected graphs with vertex connectivity s. By Lemma 1, G = K V
(Kn, UK,,), for ng >ny > 1 and s+ n; +ns = n.
Suppose that n; > 1. Let G; = K,V (Kp,—1 U K,,,+1) and by Lemma 2,
z(G1) can be written as
z(Gh) = (yo,---7yo,y17~-~,y1,y2,-~-7y2)T-
—_— —— ——

s ny—1 no+1

Then, by minimality argument we have

2T (G1)D(G1)z(G1) = p(G1) = p(G) = 2" (G1)D(G)z(Gh),

ie.,
(2) Z‘T(Gl)D(Gl).T(Gl) — $T(G1)D(G)$(G1) 2 0.
Note that
0 0 0
D(G) == J - In + O O Jnl Xng 9
0 Jn2><nl 0
0 0 0
D(Gl) =J-1I,+ 0 0 J(nlfl)x(anrl)
0 Jmat1)x(ni—1) 0
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By Lemma 3, we have

aT(G1) (D(G) — D(Gh)) z(Gh)
0 0 0 0
0 0 Jin, — 0
— T G (n1—1)x1 G
z (G 0 —Jixmi-1) 0 J1xns (G
0 0 Jnax1 0
0
—yod(n, —
— TG Y2J(n;—1)x1
v (&) nays — (n1 — Dy
Y2nyx1

=2[((n2 +1) = 1) ya — (n1 — Dy1] y2 = 2(n2y2 — may1 +y1)y2 > 0,

which is a contradiction to (2).
Thus n1 = 1, and therefore G = K,V (K1 U K,,—1_5). O

4. GRAPHS WITH GIVEN MATCHING NUMBER

t
Let G=V(KsV (Kp, UK,, U---UK,,)), where s + an = n. By Lemma
=1
2, entries of z(G) have the same value, say yo, for the vertices in V(Kj), and y; for
the vertices in V(K,,), where i = 1,2, -- t.

In a similar way as Lemma 3, we have
Lemma 4. In the setup as above, if ny > ny + 1, then (ng — 1)ys — niy; > 0.

A component of a graph is said to be even (odd) if it has an even (odd)
number of vertices. Let G be a graph with n vertices. Let o(G) be the number of
odd components of G. By the Tutte-Berge formula [8, 9],

n—2m =max{o(G—X)—|X|: X CV(G)}.

The matching number of the graph G is the number of edges in a maximum
matching, denoted by m(G) and if the graph G is understood, we omit the argument
G and simply write m.

Theorem 2. Let G be an n-vertex connected graphs with matching number m,
where 2 <m < {SJ

(i) If m = LgJ, then p(G) > n — 1 with equality if and only if G = K,,;

n

(i) If2<m < LaJ — 1, then p(G) = p (Km V Kp—m ) with equality if and only
ifG=K,VK,_mn.
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Proof. Let G be a graph with minimal spectral radius of D(G) in the class of
n-vertex connected graphs with matching number m. By the Tutte-Berge formula,
there is a vertex subset Xo C V(G) such that n — 2m = max{o(G — X) — |X]| :
X CcV(G)} = o(G — Xy) — | Xo|. For convenience, let | Xo| = s and o(G — Xy) = k.
Then n —2m =k — s.

Suppose that s = 0. Then G — Xg =G and n —2m =k < 1. If £ = 0, then

= % ,and if kK = 1, then m = nT_l . In both cases, we have by Lemma 1 that

m
G=K,.

Suppose in the following that s > 1. Then k£ > 1. Let G1,Ga, ..., Gy be all
odd components of G — X. If G — X has an even component, then by adding an
edge to G between a vertex of an even component and a vertex of an odd component
of G— X, we obtain a graph G, for which n—2m(G’) > o(G'—xzy) = o(G—Xj), and
then m(G’) = m(G). By Lemma 1, p(G) > p(G’), it is a contradiction to the choice
of G. Thus G— X does not have an even component. Similarly, G1,Gs, ..., G and
the subgraph induced by X, are all complete, and any vertex of G; (i = 1,...,k)
is adjacent to every vertex in Xo. Thus G = K,V (K, UK, U...UK,,).

First, we show that G — Xy has at most one odd component whose number
of vertex is more than one. Assume that ny > n; > 2. Let Gy = K, V (K, -1 U
Kpy,41 UKy, ...UK,,) and by Lemma 2, (G1) may be written as

I(Gl) = (yO""?y07y1a"'7y17y27'"7y27y3a"'ay37"'ayk7"'ayk)T'
1 +1
S ny— na ns nk
Then, by minimality argument we have
2T D(Gy)z = p(G1) > p(G) > 2T D(G)z,
ie.,
(3) 7 (G1)D(G1)x(Gy) — 2T (G1)D(G)x(Gy) > 0.
Note that
0 0 0 0 0 0
0 0 Jn1><n2 Jn1><n3 Jnlxnt
D(G) :J_In+ 0 anxnl 0 Jn2><n3 J’VLQXTLt
0

Jn3><n1 Jn3><'n2 0 Jn3><nf,

By Lemma 4, we have
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0
—Y2J(n, ~1)x1
=z"(G1) | naya— (m — Dy | = 2(nay2 — mays +y1)y2 > 0,
Y2Jnax1
0

which is a contradiction to (3). Thus G — X has at most one odd component whose
number of vertex is more than one.

Now, we show that G does not have the odd component with number of ver-
tices greater than 1. By contradiction, suppose that G = K,V (Kx_1 UKp—s—k+1),
where n > s+ k. Let ny =n—s—k+1and Gy = Koy V (Kr_1 UKy, 1), by
Lemma 2, z(G3) may be written as

m(GQ) = (y()v Y0 Y1y -5 Y1, Y2, Y3, - vyk)T~
—_—— —
s+1 ni—1

Then, by minimality argument we have

27(G2)D(G2)z(G2) = p(Ga) > p(G) > 27 (G2)D(G)z(G),

ie.,
(4) 2T (Gy)D(Ga)x(Ga) — 2T (G2)D(G)x(Ga) > 0.
Note that
0 0 0
DG =J+IL,+1| 0 0 Inyxk
0 Jexn: Jexk — Ik

Then we have

0 0 0
T T 0 0  Jixk
2 - 2 2) = 2 2 )
27(Go) (D(G) ~ D(Go)) w(Ga) =2 (Go) | o 0 "L | a(G) >0
0 Jk><1 0
which is a contradiction to (4), thus G = K,,_j V K=K,V K. O

5. GRAPHS WITH GIVEN CHROMATIC NUMBER

Let G = Ky, ns,...n,., Where an =n and n; > 0. By Lemma 2, entries of
i=1
2(G) have the same value, say y;, for vertices in V; (i = 1,2,...,7), where V; is a
vertex partition and |V;| = n,.

Lemma 5. In the setup as above, n; > n; if and only if y; > y; and n; = n; if
and only if y; = y;.
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Proof. Let p = p(G). From Eq. (1), we have
> ke + (ni = 2)yi = pyi,
k=1

Dy + (ng = 2)y; = py;.
k=1

Then

T

> nkyk Yk
=L (n; —2) = b=l

Yi Yj

n n iny(l 1>
.= WUk [ — — =
’ ! 1 yi  Yi)’

+ (nj - 2)7

ie.,

which implies that
n; >n; < Y >Yj,
ng =n; < Yi=1Yj,

as desired. O

The chromatic number of a graph G is the smallest number of colors needed
to color the vertices of G such that any two adjacent vertices have different colors.
A subset of vertices assigned to the same color is called a color class, every such class
forms an independent set. The Turan graph T, , is a complete r-partite graph on n
vertices for which the numbers of vertices of vertex classes are as equal as possible.

Theorem 3. Let G be an n-vertex connected graph with chromatic number r, where
2<r<n-—1 IfG# Ty, then p(G) > p(Tpr)-

Proof. Let G be the graph with minimal spectral radius of D(G) in the class of
n-vertex connected graph with chromatic number r. Then V(G) can be partitioned
into r independent sets V1, Va,..., V., where |V;| =n; (i=1,2,...,r) and Z n; =
1=1
n. By Lemma 1, G = Ky, n,....n,.
Suppose that G is not the Turdn graph. Then there exist 4,j such that

|n; — nj| > 1. Suppose without loss of generality that ng —1 > n;. Let G; =
Ky 4+1,n5-1,ns,...n, and by Lemma 2, z(G1) may be written as

I(Gl) = (ylv--~7y1ay27~'- yY2,Y35 -+, Y3 "'7y7"7"'7y7“)T

—_— — — —

ni+1 no—1 ns zs

Then, by minimality argument we have

? (G1)D(G1)x(G1) = p(G1) 2 p(G) = 27 (G1)D(G)z(Gh),
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le.,
(5) z7(G1)D(G1)z(G1) — a7 (G1) D(G)z(G1) > 0.
Note that
Jnyxny — Iny 0 0 0
D(G)=J-1,+ 0 Inascna = Ing 0 0

0 0 Jn3><n3 - ITLg 0

Then, by Lemma 5
2" (G1)(D(G) = D(G1))z(Gh)

0 —Jnyx1 0 0
T —J1xn, 0 Jix(no—1) 0O
SRl I S Sl EC
0 0 0 0
_y1Jn1X1
— (G (n2 —Jl)y2—”1y1
Y2J(ny—1)x1
0

=yi[(n2 — Dy2 — nayn] + (n2 — Dya(y2 — y1) + v1l(n2 — 1)ya — nayi]
= (n2 — )ys> + (n2 — Dy1ye — 21y > 0,

which is a contradiction to (5), and thus G is the Turdn graph T, ,. O
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