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ON THE LOWER AND UPPER SOLUTION METHOD

FOR HIGHER ORDER FUNCTIONAL BOUNDARY

VALUE PROBLEMS

John R. Graef, Lingju Kong, Feliz M. Minhós, João Fialho

The authors consider the nth-order differential equation

−
(
φ(u(n−1)(x))

)′
= f(x, u(x), . . . , u(n−1)(x)),

for x ∈ (0, 1), where φ : R → R is an increasing homeomorphism such that
φ(0) = 0, n ≥ 2, I := [0, 1], and f : I × Rn → R is a L1-Carathéodory
function, together with the boundary conditions

gi
(
u, u

′
, . . . , u

(n−2)
, u

(i)(1)
)
= 0, i = 0, . . . , n− 3,

gn−2

(
u, u

′
, . . . , u

(n−2)
, u

(n−2)(0), u(n−1)(0)
)
= 0,

gn−1

(
u, u

′
, . . . , u

(n−2)
, u

(n−2)(1), u(n−1)(1)
)
= 0,

where gi : (C(I))n−1 × R → R, i = 0, . . . , n − 3, and gn−2, gn−1 :
(C(I))n−1

×R2 → R are continuous functions satisfying certain monotonicity
assumptions.
The main result establishes sufficient conditions for the existence of solutions
and some location sets for the solution and its derivatives up to order (n−1).
Moreover, it is shown how the monotone properties of the nonlinearity and
the boundary functions depend on n and upon the relation between lower
and upper solutions and their derivatives.

1. INTRODUCTION

In this paper, we consider the nth-order boundary value problem consisting
of the differential equation

(1) −
(

φ(u(n−1)(x))
)

′

= f(x, u(x), . . . , u(n−1)(x)),
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for x ∈ (0, 1), where φ : R → R is an increasing homeomorphism such that φ(0) = 0,
n ≥ 2, I := [0, 1], and f : I×R

n → R is a L1-Carathéodory function, together with
the boundary conditions

gi
(

u, u′, . . . , u(n−2), u(i)(1)
)

= 0, i = 0, . . . , n− 3,

gn−2

(

u, u′, . . . , u(n−2), u(n−2)(0), u(n−1)(0)
)

= 0,(2)

gn−1

(

u, u′, . . . , u(n−2), u(n−2)(1), u(n−1)(1)
)

= 0,

where gi : (C(I))
n−1

×R → R, i = 0, . . . , n−3, and gn−2, gn−1 : (C(I))
n−1

×R
2 → R

are continuous functions satisfying certain monotonicity assumptions that will be
described below.

This type of boundary value problem includes a wide range of equations,
problems and applications that are improved by this work. As examples, we refer
the reader to the papers [6, 9, 13, 14] for higher order separated problems, to
[4, 5, 8, 10, 11, 12, 16, 18], for multipoint cases, and to [1, 2, 3, 15], for higher
order functional problems.

The method used here is suggested by that in [7]. However, since the first
(n − 3) boundary conditions include values at the right end point of the interval,
the general result requires some features that were not evident in previous works.
So the contributions of this paper emanate not just from the main theorem itself
and its applications, but also from the consequences that can be drawn from it. In
this sense, we wish to point out the following features.

• For n ≥ 3, the order relation between the lower and upper solutions and their
derivatives up to and including the order (n − 3) is not relevant. In fact,
these orders depend whether n is odd or even and on the relation between
the (n−2)-nd derivatives of the lower and upper solutions. Moreover, the sets
yielding the location of the derivatives u(i), i = 0, . . . , n− 2, of the solution u
of the problem (1)–(2), are defined by the derivatives of the lower and upper
solutions being well ordered or in reverse order (see Remark 1).

• The assumptions on the monotonic behavior of the functions in the boundary
data depend on the parity of n (see assumptions (H1) and (H2)).

The arguments follow the standard lower and upper solutions technique to-
gether with a Nagumo-type condition, to control the growth of u(n−1), and a fixed-
point result. We should also point out that due to the truncation technique that
we use, we do not need to require the usual assumption that φ (R) = R.

2. PRELIMINARY RESULTS AND DEFINITIONS

In this section, we will provide some definitions and results to be used later
in the paper.
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Let Lp, 1 ≤ p ≤ ∞, be the usual spaces with the standard norms

||u||p =

{

( ∫
1

0

|u(t)|pdt
)1/p

, 1 ≤ p <∞,

sup{|u(t)| : t ∈ I}, p = ∞.

A function f : I × R
n → R is said to be a Carathéodory function if it satisfies the

following conditions:

(i) For each y ∈ R
n the function f(·, y) is measurable on I ;

(ii) For a. e. x ∈ I the function f(x, ·) is continuous on R
n;

(iii) For each compact set K ⊂ R
n there is a function ψK ∈ L1(I) such that

|f(x, y)| ≤ ψK(x) for a. e. x ∈ I and all y ∈ K.

The following Nagumo-type condition will play an important role in obtaining
an a priori estimate for the derivative u(n−1).

Definition 1. Given a subset E ⊂ I × R
n, a function f : I × R

n → R satisfies a
Nagumo-type condition in the set

E := {(x, y0, . . . , yn−1) ∈ I × R
n : mj(x) ≤ yj ≤Mj(x), j = 0, . . . , n− 2} ,

with mj ,Mj ∈ C (I,R) such that

mj(x) ≤Mj(x) for all x ∈ I and j = 0, . . . , n− 2,

if there is hE ∈ C(R+

0
, (0,+∞)) such that

(3) |f(x, y0, . . . , yn−1)| ≤ hE(|yn−1|), ∀(x, y0, . . . , yn−1) ∈ E,

and

(4)

∫ φ(∞)

φ(r)

∣

∣φ−1(s)
∣

∣

hE(|φ−1(s)|)
ds > max

x∈[0,1]
Mn−2(x) − min

x∈[0,1]
mn−2(x),

for r ≥ 0, where

(5) r := max {Mn−2(1)−mn−2(0),Mn−2(0)−mn−2(1)} .

Our first two lemmas are taken from [6].

Lemma 1. ([6, Lemma 2]) Let mj , Mj ∈ C ([0, 1],R) with

mj(x) ≤Mj(x) for all x ∈ I and j = 0, . . . , n− 2,

and let f : E → R be a Carathéodory function satisfying a Nagumo-type condition
in E. Then there exists R > 0 (depending only on mn−2, Mn−2, and hE) such that
every solution u(x) of (1) with

(6) mj(x) ≤ u(j)(x) ≤Mj(x) for all x ∈ I and j = 0, . . . , n− 2,

satisfies
∥

∥u(n−1)
∥

∥

∞
< R.
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Our next lemma guarantees the existence and uniqueness of solutions to a
problem related to (1)–(2).

Lemma 2. ([6, Lemma 3]) Let ϕ : R → R be an increasing homeomorphism such
that ϕ(0) = 0 and ϕ(R) = R, let p : [0, 1] → R with p ∈ L1 ([0, 1]) , and let Ai, B,

C ∈ R, i = 0, . . . , n− 3. Then the problem

(7)















−
(

ϕ
(

u(n−1)(x)
))′

= p(x), for a. e. x ∈ [0, 1],

u(i)(1) = Ai, i = 0, . . . , n− 3,

u(n−2)(0) = B,

u(n−2)(1) = C,

has a unique solution given by

u(x) = B +

∫ x

0

ϕ−1

(

τv −

∫ s

0

p(r)dr

)

ds

if n = 2, and

u(x) =
n−3
∑

k=0

(−1)kAk

(1− x)k

k!
+ (−1)n

∫

1

x

(s− x)n−3

(n− 3)!
v(s)ds

if n ≥ 3, where

v(x) := B +

∫ x

0

ϕ−1

(

τv −

∫ s

0

p(r)dr

)

ds

and τv ∈ R is the unique solution of the equation

(8) C −B =

∫

1

0

ϕ−1

(

τv −

∫ s

0

p(r)dr

)

ds.

Some properties of truncated functions that we will need later are given in
the next lemma.

Lemma 3. ([17, Lemma 2]) Let z, w ∈ C(I) with z(x) ≤ w(x) and for every x ∈ I,

define

q(x, u) = max{z,min{u,w}}.

Then, for each u ∈ C1(I), the following properties hold :

(a)
d

dx
q(x, u(x)) exists for a.e. x ∈ I;

(b) If u, um ∈ C1(I) and um → u in C1(I), then

d

dx
q(x, um(x)) →

d

dx
q(x, u(x)) for a.e. x ∈ I.
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In the sequel, we will assume that the continuous functions gi : (C(I))
n−1 ×

R → R, i = 0, . . . , n − 3, and gn−2, gn−1 : (C(I))
n−1

× R
2 → R have different

behavior depending on whether n is even or odd. More precisely we have the
following.

(i) For n even, we say that the boundary functions satisfy assumption (H1) if
the following conditions hold:

• gj(y0, y1, . . . , yn−1) are nondecreasing in y0, y2, . . . , yn−2, and nonincrea-
sing in y1, y3, . . . , yn−3, for j even and 0 ≤ j ≤ n− 4;

• gk(y0, y1, . . . , yn−1) are nonincreasing in y0, y2, . . . , yn−2, and nondecrea-
sing in y1, y3, . . . , yn−3 for k odd and 1 ≤ k ≤ n− 3;

• gn−2(y0, y1, . . . , yn−1, yn) is nondecreasing in y0, y2, . . . , yn−2 and yn, and
nonincreasing in y1, y3, . . . , yn−3;

• gn−1(y0, y1, . . . , yn−1, yn) is nondecreasing in y0, y2, . . . , yn−2 and nonin-
creasing in y1, y3, . . . , yn−3 and yn.

(ii) For n odd, we say that the boundary functions satisfy (H2) if the following
conditions hold:

• gj(y0, y1, . . . , yn−1) are nondecreasing in y0, y2, . . . , yn−3 and nonincreas-
ing in y1, y3, . . . , yn−2 for j even and 0 ≤ j ≤ n− 3;

• gk(y0, y1, . . . , yn−1) are nonincreasing in y0, y2, . . . , yn−3 and nondecreas-
ing in y1, y3, . . . , yn−2 for k odd and 1 ≤ k ≤ n− 4;

• gn−2(y0, y1, . . . , yn−1, yn) is nonincreasing in y0, y2, . . . , yn−3 and nonde-
creasing in y1, y3, . . . , yn−2 and yn;

• gn−1(y0, y1, . . . , yn−1, yn) is nonincreasing in y0, y2, . . . , yn−3 and yn and
nondecreasing in y1, y3, . . . , yn−2.

We let AC(I) denote the set of absolutely continuous function on I. These
functions will be used as lower and upper solutions as defined as follows.

Definition 2. Let n ≥ 2. A function α ∈ Cn−1(I) with φ
(

α(n−1)(x)
)

∈ AC(I) is
a lower solution of the problem (1)–(2) if

(9) −
(

φ(α(n−1)(x))
)

′

≤ f(x, α(x), α′(x), . . . , α(n−1)(x)),

for x ∈ (0, 1) a.e., and

(i) for n even,

(10)
gj
(

α, α′, . . . , α(n−2), α(j)(1)
)

≥ 0, for j even and 0 ≤ j ≤ n− 4,

gk
(

α, α′, . . . , α(n−2), α(k)(1)
)

≤ 0, for k odd and 1 ≤ k ≤ n− 3,
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(ii) for n odd,

(11)
gj
(

α, α′, . . . , α(n−2), α(j)(1)
)

≤ 0, for j even and 0 ≤ j ≤ n− 3,

gk
(

α, α′, . . . , α(n−2), α(k)(1)
)

≥ 0, for k odd and 1 ≤ k ≤ n− 4,
and

(iii) in both cases,

gn−2

(

α, α′, . . . , α(n−2), α(n−2)(0), α(n−1)(0)
)

≥ 0,

gn−1

(

α, α′, . . . , α(n−2), α(n−2)(1), α(n−1)(1)
)

≥ 0.

Similarly, a function β ∈ Cn−1(I) with φ
(

β(n−1)(x)
)

∈ AC(I) is an upper
solution of the problem (1)–(2) if the reverse inequalities hold in each case.

3. EXISTENCE AND LOCATION THEOREM

Our main result, Theorem 1 below, is an existence and location theorem, as
is usual in using the lower and upper solution technique. However, in this case, the
strips are bounded by well ordered (or reverse ordered) lower and upper solutions
and their corresponding derivatives. Therefore, for a more clear notation, we define
the following functions:

(12) γi(x) = min
x∈I

{

α(i)(x), β(i)(x)
}

and Γi(x) = max
x∈I

{

α(i)(x), β(i)(x)
}

,

for each i = 0, . . . , n− 2.

Theorem 1. Let f : I × R
n → R be a L1-Carathéodory function.

Assume that α and β are lower and upper solutions of problem (1)–(2), respectively,
such that

α(n−2)(x) ≤ β(n−2)(x) for all x ∈ I,(13)

(−1)
m
α(n−2−m)(1) ≤ (−1)

m
β(n−2−m)(1), m = 1, . . . , n− 2,(14)

f satisfies the Nagumo-type condition (3) in the set

E∗ =
{

(x, y0, . . . , yn−1) ∈ I × R
n : γi(x) ≤ yi ≤ Γi(x), i = 0, . . . , n− 2

}

,

and

f(x, α(x), . . . , α(n−3)(x), yn−2, yn−1) ≤ f(x, y0, . . . , yn−1)(15)

≤ f(x, β(x), . . . , β(n−3)(x), yn−2, yn−1),

for fixed x, yn−2, yn−1, and γk(x) ≤ yk ≤ Γk(x), k = 0, . . . , n − 3, for all x ∈ I.

Moreover, if n is even and the boundary functions satisfy (H1), or n is odd and the
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boundary functions satisfy (H2), then the problem (1)–(2) has at least one solution
u such that

γi(x) ≤ u(i)(x) ≤ Γi(x),

for i = 0, . . . , n− 2, and

−R ≤ u(n−1)(x) ≤ R,

for every x ∈ I, with

(16) R > max{β(n−2)(1) − α
(n−2)(0), β(n−2)(0)− α

(n−2)(1), ‖α(n−1)
‖∞, ‖β

(n−1)
‖∞}.

Remark 1. Integrating (13) in [x, 1] and applying (14), causes the derivatives of the lower
and upper solutions to change order. That is, for every x ∈ I,

α
(n−3)(x) ≥ β

(n−3)(x),

α
(n−4)(x) ≤ β

(n−4)(x),

...

α(x) ≤ β(x),

if n is even. For n odd, the iteration will end with α(x) ≥ β(x) in I.

Since the relation between the lower and upper solutions depends on n, and their
derivatives can be well ordered or in reversed order, this issue does not have the same
relevance for n ≥ 3 as it does for first and second order problems. As a consequence, the
same can be said for the variation of the nonlinear function f as can be seen in (15).

Proof of Theorem 1. For i = 0, . . . , n− 2, consider the continuous truncations

(17) δi (x,w) =











Γi(x), w > Γi(x),

w, γi(x) ≤ w ≤ Γi(x),

γi(x), w < γi(x),

where γi(x) and Γi(x) are given by (12). For R given by (16), consider the functions

(18) ξ(y) = max {−R,min{y, R}}

and ϕ : R → R given by

ϕ(y) =







φ(y), if |y| ≤ R,

φ(R)− φ(−R)

2R
y +

φ(R) + φ(−R)

2
, if |y| > R.

Define the modified problem composed of the differential equation

−
(

ϕ
(

u(n−1)(x)
))

′

(19)

= f

(

x, δ0(x, u), . . . , δn−2

(

x, u(n−2)
)

, ξ

(

d

dx
δn−2

(

x, u(n−2)
)

))

≡ Fu(x)
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and the boundary conditions

u(i)(1) = δi
(

1, u(i)(1) + gi(u, . . . , u
(n−2), u(i)(1))

)

, i = 0, . . . , n− 3,

u(n−2)(0) = δn−2

(

0, u(n−2)(0) + gn−2(u, . . . , u
(n−2), u(n−2)(0), u(n−1)(0))

)

,(20)

u(n−2)(1) = δn−2

(

1, u(n−2)(1) + gn−1(u, . . . , u
(n−2), u(n−2)(1), u(n−1)(1))

)

.

A function u ∈ Cn−1(I) such that ϕ ◦ u(n−1) ∈ AC(I) is a solution of problem
(19)–(20) if it satisfies the above equalities.

Step 1: Every solution of problem (19)–(20) satisfies

γi(x) ≤ u(i)(x) ≤ Γi(x), for i = 0, . . . , n− 2,(21)

−R ≤ u(n−1)(x) ≤ R(22)

in I.

Let u be a solution of (19)–(20). For i = n− 2, we have γn−2(x) = α(n−2)(x)
and Γn−2(x) = β(n−2)(x). Assume, for the sake of a contradiction, that the second
inequality in (21) does not hold and define

max
x∈[0,1]

(u− β)(n−2)(x) := (u− β)(n−2)(x0) > 0.

By (20), u(n−2)(0) ≤ β(n−2)(0) and u(n−2)(1) ≤ β(n−2)(1). So there is an x0 ∈ (0, 1)
with u(n−1)(x0) = β(n−1)(x0) and there is ε > 0 such that

u(n−2)(x0 + ε) = β(n−2)(x0 + ε)

and u(n−2)(x) > β(n−2)(x) on [x0, x0 + ε).

On (x0, x0 + ε), by Definition 2, (15), (17), (18) and (16), we have

−
(

ϕ(u(n−1)(x))
)

′

= f

(

x, δ0 (x, u) , . . . , δn−2(x, u
(n−2)), ξ

(

d

dx
δn−2(x, u

(n−2))

))

= f
(

x, δ0 (x, u) , . . . , δn−3(x, u
(n−3)), β(n−2)(x), β(n−1)(x)

)

≤ f
(

x, β(x), . . . , β(n−3), β(n−2) (x) , β(n−1)(x)
)

≤ −
(

φ(β(n−1)(x))
)

′

= −
(

ϕ(β(n−1)(x))
)

′

.

Therefore, u(n−1)(x) ≥ β(n−1)(x) on (x0, x0 + ε), which contradicts the definition
of the interval [x0, x0 + ε). Hence, u(n−2)(x) ≤ β(n−2)(x) for every x ∈ I. By an
analogous argument, it can be shown that α(n−2)(x) ≤ u(n−2)(x) in I.

Integrating the inequalities

α(n−2)(x) ≤ u(n−2)(x) ≤ β(n−2)(x),

in [x, 1] and applying (14) and (20), we obtain

α(n−3)(x) ≥ u(n−3)(x) ≥ β(n−3)(x).



On the lower and upper solution method for higher order. . . 141

Repeated integrations show that for n even,

α(j)(x) ≤ u(j)(x) ≤ β(j)(x) for j even and 0 ≤ j ≤ n− 2,

and
α(k)(x) ≥ u(k)(x) ≥ β(k)(x) for k odd and 1 ≤ k ≤ n− 3.

For n odd,

α(k)(x) ≤ u(k)(x) ≤ β(k)(x) for k odd and 1 ≤ k ≤ n− 2,

and
α(j)(x) ≥ u(j)(x) ≥ β(j)(x) for j even and 0 ≤ j ≤ n− 3.

Therefore, condition (21) holds for i = 0, . . . , n− 2.

From Lemma 3 and the definition of ξ, the right hand side of equation (19)
is a L1-function. Therefore, Lemma 1 can be applied with mj(x) = γj(x) and
Mj(x) = Γj(x) for j = 0, . . . , n− 2, that is, condition (22) holds.

Step 2: Problem (19)–(20) has a solution u1(x).

First we consider the case n ≥ 3. Let u ∈ Cn−1(I) be fixed. By Lemma 2,
solutions of problem (19)–(20) are the fixed points of the operator

T u(x) =

n−3
∑

k=0

(−1)kδk
(

1, u(k)(1) + gk(u, . . . , u
(n−2), u(k)(1))

) (1− x)
k

k!

+ (−1)n
∫ 1

x

(s− x)n−3

(n− 3)!
vu(s)ds,

with

vu(x) := gn−2

(

u, u′, . . . , u(n−2), u(n−2)(0), u(n−1)(0)
)

+

∫ x

0

ϕ−1

(

τu−

∫ s

0

Fu(r)dr

)

ds

and τu ∈ R is the unique solution of the equation

(23) gn−1

(

u, u′, . . . , u(n−2), u(n−2)(1), u(n−1)(1)
)

− gn−2

(

u, u′, . . . , u(n−2), u(n−2)(0), u(n−1)(0)
)

=

∫ 1

0

ϕ−1

(

τu −

∫ s

0

Fu(r)dr

)

ds.

By (19), there is a function ω ∈ L1(I) such that

|Fu(s)| ≤ ω(s) for a. e. s ∈ I and for all u ∈ Cn−1(I),

and by (23), there exists L > 0 such that

|τu| ≤ L for all u ∈ Cn−1(I).

Thus, the operator T (Cn−1(I)) is bounded in Cn−1(I), and by Schauder’s fixed
point theorem, T has a fixed point u1. If n = 2, a similar proof holds.
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Step 3: u1(x) is a solution of problem (1)–(2).

To see this, it suffices to show that

γi(1) ≤ u
(i)

1
(1) + gi

(

u1, u
′

1
, . . . , u

(n−2)

1
, u

(i)

1
(1)

)

(24)

≤ Γi(1), i = 0, . . . , n− 3,

α(n−2)(0) ≤ u
(n−2)

1
(0) + gn−2

(

u1, u
′

1
, . . . , u

(n−2)

1
, u

(n−2)

1
(0), u

(n−1)

1
(0)

)

(25)

≤ β(n−2)(0),

and

α(n−2)(1) ≤ u
(n−2)

1
(1) + gn−1

(

u1, u
′

1
, . . . , u

(n−2)

1
, u

(n−2)

1
(1), u

(n−1)

1
(1)

)

≤ β(n−2)(1).

Suppose that n is even. Consider the case i = 0. Then, by (14), γ0 (1) = α(1)
and Γ0 (1) = β(1). Assume, for the sake of a contradiction, that

u1(1) + g0
(

u1, u
′

1, . . . , u
(n−2)

1
, u1(1)

)

> β(1).

By (20), u1(1) = β (1) , and by (H1) and Definition 2, we have

0 < g0
(

u1, u
′

1
, . . . , u

(n−2)

1
, u1(1)

)

= g0
(

u1, u
′

1
, . . . , u

(n−2)

1
, β(1)

)

≤ g0
(

β, β′, . . . , β(n−2), β(1)
)

≤ 0,

which is a contradiction. Hence,

u1(1) + g0
(

u1, u
′

1, . . . , u
(n−2)

1
, u1(1)

)

≤ β(1).

By the same technique, it can be shown that

α(1) ≤ u1(1) + g0
(

u1, u
′

1, . . . , u
(n−2)

1
, u1(1)

)

as well as the remaining inequalities in (24).

Suppose the first inequality in (25) does not hold. Then, from (20), we have

u
(n−2)

1
(0) = α(n−2)(0), and by (21), u

(n−1)

1
(0) ≥ α(n−1) (0) . By the monotone

assumptions on gn−2, (10) yields

0 > gn−2

(

u1, u
′

1
, . . . , u

(n−2)

1
, u

(n−2)

1
(0), u

(n−1)

1
(0)

)

= gn−2

(

u1, u
′

1
, . . . , u

(n−2)

1
, α(n−2)(0), u

(n−1)

1
(0)

)

≥ gn−2

(

α, α′, . . . , α(n−2), α(n−2)(0), α(n−1)(0)
)

≥ 0,

which again is a contradiction. Hence,

α(n−2)(0) ≤ u
(n−2)

1
(0) + g

(

u1, u
′

1
, . . . , u

(n−2)

1
, u

(n−2)

1
(0), u

(n−1)

1
(0)

)

.

A similar approach shows that

u(n−2)(0) + gn−2

(

u1, u
′

1, . . . , u
(n−2)

1
, u

(n−2)

1
(0), u

(n−1)

1
(0)

)

≤ β(n−2) (0) .
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Now assuming that

α(n−2)(1) > u
(n−2)

1
(1) + gn−1

(

u1, u
′

1
, . . . , u

(n−2)

1
, u

(n−2)

1
(1), u

(n−1)

1
(1)

)

,

similar arguments show u
(n−2)

1
(1) = α(n−2)(1) and u

(n−1)

1
(1) ≤ α(n−1)(1).

Therefore, from the properties of gn−1, we have

0 > gn−1

(

u1, u
′

1
, . . . , u

(n−2)

1
, u

(n−2)

1
(1), u

(n−1)

1
(1)

)

= gn−1

(

u1, u
′

1
, . . . , u

(n−2)

1
, α(n−2)(1), u

(n−1)

1
(1)

)

≥ gn−1

(

α, α′, . . . , α(n−2), α(n−2)(1), α(n−1)(1)
)

≥ 0,

which is a contradiction. The remaining inequality can also be demonstrated by
the above technique.

For n odd, the arguments are analogous using the monotone assumptions in
(H2) and the corresponding boundary conditions. �

4. EXAMPLES

In this section, we present two examples to illustrate the cases of n odd and
even. The boundary conditions are chosen not for their physical meaning but to
emphasize the possibilities available in the functional dependence.

Example 1. For n = 3, consider the problem consisting of the equation

(26)
u′′′(x)

1 + (u′′(x))2
= (u(x))3 + k

(
u
′(x)

)5
−

3
√

u′′(x) + 1

and the boundary conditions

Au(1) =

+∞∑

j=1

aju(ξj)−

+∞∑

j=1

bju
′(ηj),

Bu
′(0) = max

x∈[0,1]
u
′(x)−

∫ x

0

u(t)dt+
(
u
′′(0)

)2p+1

,(27)

Cu
′(1) = min

x∈[0,1]
u
′(x)− max

x∈[0,1]
u(x)−

(
u
′′(1)

)2q+1

,

with k, A, B, C ∈ R, 0 ≤ ξj , ηj ≤ 1 for all j ∈ N, p, q ∈ N, and

+∞∑

j=1

aj and

+∞∑

j=1

bj are

nonnegative and convergent series with sums a and b, respectively.

This problem is a particular case of (1)–(2), where φ(z) = arctan z (notice that
φ(R) 6= R),

f(x, y0, y1, y2) = −y
3

0 − ky
5

1 + 3
√

y2 + 1,

g0(z1, z2, z3) =

+∞∑

j=1

ajz1(ξj)−

+∞∑

j=1

bjz2(ηj)−Az3,

g1(z1, z2, z3, z4 = max
x∈[0,1]

z2 −

∫ x

0

z1(t)dt+ z
2p+1

4
−Bz3,

g2(z1, z2, z3, z4) = min
x∈[0,1]

z2 − max
x∈[0,1]

z1 − z
2q+1

4
− Cz3.
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The lines α(x) = 2−x and β(x) = x−2 are, respectively, lower and upper solutions
of the problem (26)–(27) for k ≥ 9, A ≥ 2a+ b, B ≥ 3, and C ≥ 3. Therefore, by Theorem
1, there is a nontrivial solution u(x) of problem (26)–(27), such that

β(x) = x− 2 ≤ u(x) ≤ 2 − x = α(x) and α
′(x) = −1 ≤ u

′(x) ≤ 1 = β
′(x),

for all x ∈ I.

Example 2. For n = 4, consider the functional boundary value problem

(u′′′(x)2p+1)′ = − arctan(u(x)) + (u′(x))3 − k(u′′(x))5 − |u
′′′(x) + 1|θ ,

Au(1) = max
x∈[0,1]

u
′(x)−

∫ x

0

u(t)dt,

Bu
′(1) =

+∞∑

j=1

aj u
′′(ξj),(28)

C
(
u
′′(0)

)
3

= − max
x∈[0,1]

u(x− τ ), (0 < τ ≤ x ≤ 1),

Du
′′(1) = u

′(max{0, x− ε}), (ε > 0) ,

where p ∈ N, θ ∈ [0, 2], k, A, B, C, D ∈ R, 0 ≤ ξj ≤ 1 and aj ≥ 0 for j = 1, 2, . . . , and
+∞∑

j=1

aj is convergent with sum a.

The above problem satisfies the assumptions of Theorem 1 with φ(z) = z2p+1 (in
this case φ(R) = R),

f(x, y0, y1, y2, y3) = arctan y0 − y
3

1 + ky
5

2 − |y3 + 1|θ,

g0(z1, z2, z3, z4) = Az4 − max
x∈[0,1]

z2 +

∫ x

0

z1(t)dt,

g1(z1, z2, z3, z4) = Bz4 −

+∞∑

j=1

ajz3(ξj),

g2(z1, z2, z3, z4, z5) = Cz
3

5 + max
x∈[0,1]

z1(x− τ ),

g3(z1, z2, z3, z4, z5) = Dz4 − z2(max{0, x− ε}).

The functions α(x) = − (2 − x)2 and β(x) = (2 − x)2 are, respectively, lower and

upper solutions of problem (28) for k ≤ −
π

128
−

9

32
, A ≤ −

19

3
, B ≤ −a, C ≤ −

1

8
, and

D ≤ −2. So, by Theorem 1, there is a nontrivial solution u(x) of problem (28) such that

α(x) = −(2− x)2 ≤ u(x) ≤ (2− x)2 = β(x),

β
′(x) = 2x− 4 ≤ u

′(x) ≤ 4− 2x = α
′(x),

and

α
′′(x) = −2 ≤ u

′′(x) ≤ 2 = β
′′(x)

for all x ∈ I.
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