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ON GROUPS ADMITTING NO INTEGRAL CAYLEY

GRAPHS BESIDES COMPLETE MULTIPARTITE

GRAPHS

Alireza Abdollahi, Mojtaba Jazaeri

Let G be a non-trivial finite group, S ⊆ G \ {e} be a set such that if a ∈ S,

then a−1 ∈ S and e be the identity element of G. Suppose that Cay(G,S) is

the Cayley graph with the vertex set G such that two vertices a and b are

adjacent whenever ab−1 ∈ S. An arbitrary graph is called integral whenever

all eigenvalues of the adjacency matrix are integers. We say that a group G

is Cayley integral simple whenever every connected integral Cayley graph on

G is isomorphic to a complete multipartite graph. In this paper we prove

that if G is a non-simple group, then G is Cayley integral simple if and only

if G ∼= Zp2 for some prime number p or G ∼= Z2×Z2. Moreover, we show that

there exist finite non-abelian simple groups which are not Cayley integral

simple.

1. INTRODUCTION

A graph is called integral whenever all eigenvalues of the adjacency matrix
are integers. In 1974, Harary and Schwenk have first introduced the notion of
an integral graph [8]. The characterization of integral graphs seems very difficult
so that it is better to concentrate on some special types of graphs. Let G be a
finite non-trivial group and S be a subset of G \ {e} such that S = S−1, where
e is the identity element of G. The Cayley graph Cay(G,S) is the graph, whose
vertex set isG and two vertices a, b ∈ G are adjacent whenever ab−1 ∈ S. Recall that
Cay(G,S) is a k-regular graph, where k = |S|, and G = 〈S〉 if and only if Cay(G,S)
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is connected. If Cay(G,S) is disconnected, then each connected component of
Cay(G,S) is isomorphic to Cay(〈S〉, S). Therefore, since we are considering only
integral graphs and obviously a graph is integral if and only if each its connected
component is such, we only study connected Cayley graphs.

Let us give a short review on literature about integral Cayley graphs. Every
Cayley graph over a cyclic group is circulant and integral circulant graphs are
characterized by Wasin So (see Theorem 7.1 of [14], see Theorem 2.5 below).
Unitary Cayley graphs are a family of integral circulant graphs which are denoted
by Xn = Cay(Zn, Un), where Un is the set of units of Zn (see [10]). The graphs Xn

are Kronecker products of complete multipartite graphs except for Xpn , where p is
prime, which is complete multipartite (see [13]). Walter Klotz and Torsten

Sander showed in [11] that if S belongs to the Boolean algebra generated by the
subgroups of an abelian group G, then Cay(G,S \ {e}) is integral; recall that the
Boolean algebra generated by a family of subsets of a set is obtained by arbitrary
finite intersections, unions and complements of the subsets in the family. Later
Roger C. Alperin and Brian L. Peterson showed in [4] that the Boolean
algebra generated by the subgroups of an abelian group G is equal to the Boolean
algebra generated by the integral sets of G, where a subset A of a group G is called

integral whenever
∑

a∈A

χ(a) is integer for every irreducible character χ of G. They

also proved that every atom of the Boolean algebra of subgroups of a finite group
G is {b ∈ G|〈a〉 = 〈b〉} for some a ∈ G, where the minimal non-empty subsets of
a Boolean algebra are called atoms and it is well-known that every element of a
Boolean algebra is expressible as a union of atoms. It follows that every Cayley
graph Cay(G,S) over an abelian groupG is integral if and only if S is a finite unions
of some atoms. Moreover, it is shown in [4] that the Boolean algebra generated
by the subgroups of an arbitrary finite group is contained in the Boolean algebra
generated by the integral sets of the group. This means that if S is a finite union
of some atoms of the Boolean algebra of subgroups, then it is an integral set.
Furthermore, if G is an abelian group, then by Theorem 9.8 of [9] and Theorem
3.1 of [6] due to László Babai, Cay(G,S) is integral but if G is a non-abelian
group, then G has at least one irreducible character of degree greater than one and
it is not clear how one must prove that the eigenvalues corresponding to the latter
mentioned character are integer; it is shown in Section 4 that there exists a family
of non-abelian simple groups G which can be generated by two elements a and b of
orders 2 and 3, respectively and Cay

(
G,

(
〈a〉 ∪ 〈b〉

)
\ {e}

)
is not integral.

It is evident that the Cayley graph Cay(G,G \ {e}) for any non-trivial finite
groupG is isomorphic to the complete graph of size |G| and therefore it is an integral
graph. The goal of the present paper is to find groups G admitting subsets S that
lead to “non-trivial” (hence interesting) integral Cayley graphs. Cayley integral
simple groups have been introduced in [2]: A finite group is called Cayley integral
simple whenever complete graph is the only integral connected Cayley graph on
the group. The Question 2.21 of [2] is then asked:

Question 1.1. Is any finite simple group Cayley integral simple?
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The answer to this question is negative as Proposition 2.6 shows that for
the complement G \H of any proper subgroup H in a group G, the Cayley graph
Cay(G,G \H) is a complete multipartite graph in which each part has the same
size |H | and so it is an integral graph. Question 1.1 has motivated us to “correct”
the notion of “simple” (or “trivial”) for a connected Cayley graph to be integral.
We call a finite group G a Cayley Integral Simple group (or for short a CIS-group)
whenever the only integral connected Cayley graphs of G are complete multipartite.
Hence the following question is naturally posed.

Question 1.2. For which finite non-trivial groups, there exists a “non-trivial”

connected integral Cayley graph?

In Section 3 we prove the following result.

Theorem 1.3. Let G be a finite non-simple group. Then G is a CIS-group if and

only if G ∼= Zp2 for some prime number p or G ∼= Z2 × Z2.

Having proved Theorem 1.3, to give a complete answer to Question 1.2 one
needs to consider the case of non-abelian simple groups. In Section 4, we give an
infinite family of non-abelian simple groups which are not CIS-groups. We end the
introduction with the following question.

Question 1.4. Which finite non-abelian simple groups are CIS-groups?

2. PRELIMINARIES

In this section we state some facts which we need in the other sections. Sup-
pose that Γ is a circulant graph. Consider A[Γ] = aij , the adjacency matrix of
Γ, with the labeling {0, 1, . . . , n− 1}. Then the following set is called a symbol or
circulant set of Γ.

S(Γ) = {k : a0,k = 1} ⊆ {1, 2, . . . , n− 1}.

Theorem 2.5 (Theorem 7.1 in [14]). Let Γ be a circulant graph on n vertices with

symbol S(Γ) and B(d, n) = {k : gcd(k, n) = d, d < n}. Then Γ is integral if and

only if S(Γ) is a union of the B(d, n)’s.

The following proposition is somewhat related to Proposition 2.2 of [3] and
shows that almost all groups have complete multipartite graphs as integral Cay-
ley graphs and every complete multipartite integral Cayley graph on a group has
particular inverse closed set which is the complement of a subgroup of the group.

Proposition 2.6. Let G be a finite group and Cay(G,S) be a Cayley graph. Then

G \ S is a subgroup of G if and only if Cay(G,S) is a complete multipartite graph.

In particular a complete multipartite Cayley graph has equal number of vertices in

each partition and the graph is integral.
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Proof. Suppose that H = G \ S is a subgroup of G. Then we define a relation as
following: a ∼ b if and only if ab−1 ∈ H. The relation is an equivalence relation.
Thus G is union of |G|/|H | = k distinct partitions as following:

{H,Ha1, . . . , Hak−1}.

It is trivial to see that if two elements a and b are in one partition, then ab−1 ∈ H.
Thus ab−1 /∈ S and a is not adjacent to b. On the other hand, if a and b belong
to two distinct partitions, then ab−1 /∈ H. Therefore ab−1 ∈ S and a is adjacent
to b. It follows that Cay(G,S) is a complete multipartite graph whose number of
vertices in each part is equal to the order of H.

Conversely, suppose that Cay(G,S) is a complete multipartite graph. Then
each partition of Cay(G,S) has equal number of elements since the graph is regular.
Let a, b ∈ G \ S and a 6= b. Then a, b /∈ S and the identity element of G is not
adjacent to a and b since ae−1 = a /∈ S, be−1 = b /∈ S. Therefore a,e belong to one
partition of Cay(G,S) and similarly b,e belong to one partition of Cay(G,S). Thus
a and b belong to one partition. It means that ab−1 /∈ S and G \ S is a subgroup
of G.

Let Γ1 and Γ2 be two graphs with vertex sets V1 and V2, respectively. Then
the cartesian product of the two graphs is Γ with vertex set V1 × V2 such that two
vertices (v1, w1) and (v2, w2) are adjacent whenever v1 = v2 and w1 is adjacent to w2

in Γ2 or w1 = w2 and v1 is adjacent to v2 in Γ1. It is well-known that the cartesian
product of two integral graphs is integral. Let A and B be the adjacency matrices
of Γ1 and Γ2, respectively. Then the adjacency matrix of Γ is A⊗Is+Ir⊗B, where
r and s are the numbers of vertices of Γ1 and Γ2, respectively, and Ir is the r × r
identity matrix and the operation ⊗ is the tensor product of two matrices. Recall
that if C and D are two matrices, then the eigenvalues of C ⊗D are λµ, where λ
and µ are the eigenvalues of C and D, respectively (see [7] and [15]).

3. THE MAIN THEOREM

In this section we prove the main theorem. Recall that a CIS-group is a group
which every connected integral Cayley graph on the group is complete multipartite.
At first two families of CIS-groups are introduced in the following lemma.

Lemma 3.7. If G ∼= Zp or G ∼= Zp2 for some prime number p, then G is a

CIS-group.

Proof. It is well-known that every Cayley graph on a cyclic group has circulant
adjacency matrix. Thus by Theorem 2.5 if G ∼= Zp, then G is Cayley integral simple.
Now, suppose that G ∼= Zp2 . Then by Theorem 2.5, Zp2 has at most 4 integral
Cayley graphs Cay(Zp2 , S1), Cay(Zp2 , S2), Cay(Zp2 , S3) and Cay(Zp2 , S4), where
S1 = ∅, S2 = B(1, p2), S3 = B(p, p2) and S4 = B(1, p2) ∪ B(p, p2). It is obvious
that integral connected Cayley graphs of Zp2 are Cay(Zp2 , S2) and Cay(Zp2 , S4)
but Zp2 \ S2 and Zp2 \ S4 are subgroups of Zp2 . Therefore G is a CIS-group by
Proposition 2.6.
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Lemma 3.8. If G ∼= Z2 × Z2, then G is a CIS-group.

Proof. It is trivial to see that the following graphs are all integral connected Cayley
graphs of Z2 × Z2.

Cay(Z2 × Z2, {(1, 0), (0, 1), (1, 1)}), Cay(Z2 × Z2, {(1, 0), (0, 1)})

Cay(Z2 × Z2, {(1, 0), (1, 1)}), Cay(Z2 × Z2, {(1, 1), (0, 1)}).

But Z2 ×Z2 \ {(1, 0), (0, 1), (1, 1)}, Z2 ×Z2 \ {(1, 0), (0, 1)}, Z2 ×Z2 \ {(1, 0), (1, 1)}
and Z2 × Z2 \ {(1, 1), (0, 1)} are subgroups of Z2 ×Z2. Therefore G is a CIS-group
by Proposition 2.6.

It follows from the following theorem that the complement of an integral
Cayley graph Cay(G,S), i.e. Cay

(
G, (G \ S) \ {e}

)
is also integral.

Theorem 3.9 (Theorem 8.1 of chapter 1 in [15]). Let Γ be a k-regular graph

with n vertices. suppose that A and A are the adjacency matrices of Γ and Γc,
respectively. If the eigenvalues of A are k = λ1, λ2, . . . , λn, then the eigenvalues of

A are n− 1− λ1,−1− λ2, . . . ,−1− λn.

Now, we can prove the main theorem. Suppose that Jm is the all one m×m
matrix and Im is the m×m identity matrix.

Proof of Theorem 1.3. We divide the proof into 5 cases. In all cases, we
construct integral connected Cayley graphs which are not complete multipartite.
In cases 1 and 2, abelian groups which are not simple are considered and in the
other cases non-abelian non-simple groups are treated. In cases 3 to 5, where by the
previous cases it is assumed G is non-abelian (the reader may note that in the case
4, the “non-abelian” hypothesis on the group is not used), we use the non-simplicity
hypothesis on G, i.e. the existence of a non-trivial proper normal subgroup H to
construct non-trivial connected integral Cayley graphs. In the case 3, groups G
such that the factor group G/H is cyclic and the existence of an element a ∈ G\H

of the order
∣∣∣G
H

∣∣∣ are discussed; and in the case 4, groups G for which the factor

group G/H is not cyclic of prime order are ruled out; and finally in the case 5, the
remaining case, i.e. groups G with G/H of prime order are dealt with.

Case 1. G ∼= Zpn , n > 2.

Set S = B(1, pn) ∪ B(p2, pn). By Theorem 2.5, Cay(Zpn , S) is integral con-
nected since every Cayley graph on cyclic group has circulant adjacency matrix and
〈S〉 = Zpn . On the other hand, Zpn \ S is not a subgroup of Zpn since p2 + p /∈ S
and p /∈ S but (p2 + p) − p = p2 ∈ S. Thus Zpn for n > 2 is not a CIS-group and
therefore G is not a CIS-group.

Case 2. G ∼= Zp
n1

1

× Zp
n2

2

× · · · × Zpnr
r
, r ≥ 2 and G ≇ Z2 × Z2.

Consider
S = B(1, pn1

1
)× {0} × {0} × · · · × {0}︸ ︷︷ ︸

r
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∪{0} ×B(1, pn2

2
)× {0} × · · · × {0}︸ ︷︷ ︸

r

∪ · · · ∪ {0} × {0} × {0} × · · · ×B(1, pnr

r )︸ ︷︷ ︸
r

.

By Theorem 2.5, it is easy to see that Cay(G,S) is integral. On the other hand, G\S
is not a subgroup ofG since if a = (1, 2, 0, 0, . . . , 0), b = (1, 1, 0, 0, . . . , 0) andG is not
an elementary abelian 2-group, then a, b ∈ G \ S but a− b = (0, 1, 0, 0, . . . , 0) ∈ S.
Additionally, if G is an elementary abelian 2-group and a = (1, 1, 1, 0, . . . , 0), b =
(1, 1, 0, 0, . . . , 0), then a, b ∈ G \ S but a − b = (0, 0, 1, 0, . . . , 0) ∈ S. Furthermore,
it is not hard to see that G = 〈S〉 and so Cay(G,S) is connected. Therefore G is
not a CIS-group.

Case 3. The group G is a non-abelian finite group and H is a proper normal

subgroup of G such that
G

H
is cyclic of arbitrary order k and there exists a ∈ G\H

of order k.

It is obvious that,

G = H ∪ aH ∪ · · · ∪ ak−1H.

Set S = (H\{e})∪{a, a2, . . . , ak−1}, |H | = m. It is evident that 〈S〉 = G.Moreover,
S = S−1 since the order of a is exactly k. On the other hand, if |H | = 2, then 〈a〉⊳G
and G is isomorphic to H × 〈a〉. But this is a contradiction since G is non-abelian.
Therefore G \ S is not a subgroup of G since if h1 and h2 are two distinct and
nonidentity elements ofH, then ah1, ah2 ∈ G\S but (ah1)(ah2)

−1 /∈ G\S. Consider
A which is the adjacency matrix of Cay(G,S) with the labeling {H, aH, . . . , ak−1H}
such that H = {h1, h2, . . . , hm} is fixed by the indices.

A =




Jm − Im Im . . . Im Im
Im Jm − Im Im Im
...

...
. . .

...
...

Im Im . . . Jm − Im Im
Im Im . . . Im Jm − Im




The adjacency matrix A has k2 blocks, where the diagonal blocks are Jm − Im and
the other blocks are all Im. It follows that A = (Jk−Ik)⊗Im+Ik⊗(Jm−Im). Thus
Cay(G,S) is a cartesian product of two complete graphs with m and k vertices and
it is integral. Therefore G is not a CIS-group.

Case 4. G is a finite group and H is a non-trivial proper normal subgroup of G

such that
G

H
is not cyclic of prime order.

There exists a ∈ G \H such that the order of aH is p, where p is prime and

G 6= H ∪ aH ∪ · · · ∪ ap−1H.

Set S = G \ (aH ∪ . . .∪ap−1H ∪{e}), [G : H ] = m and |H | = r. Thus pk = m for a

natural number k ≥ 2 since p|m and
G

H
is not cyclic of prime order. Furthermore,

S = S−1 since H is normal in G and G = 〈S〉 as the order of S is greater than
|G|

2
.
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On the other hand, G \S is not a subgroup of G since if h is a nonidentity element
of H, then a, ah ∈ G \ S but aha−1 /∈ G \ S. Consider the following labeling for G:

{H, aH, . . . , ap−1H, b2H, ab2H, . . . , ap−1b2H, . . . , bkH, abkH, . . . , ap−1bkH},

where H = {h1, h2, . . . , hr} is fixed by the indices and also b2, . . . , bk are distinct
elements of G \H such that

b2H /∈ {aiH |0 ≤ i ≤ p− 1},

b3H /∈ {aib2H |0 ≤ i ≤ p− 1} ∪ {aiH |0 ≤ i ≤ p− 1}, . . . ,

bkH /∈ {aibjH |0 ≤ i ≤ p− 1, 2 ≤ j ≤ k − 1} ∪ {aiH |0 ≤ i ≤ p− 1},

where a0 is defined the identity element of G.
The following matrix is the adjacency matrix of Cay(G,S) with the labeling.

A =




Jr − Ir 0 . . . 0 Jr Jr . . . Jr
0 Jr − Ir 0 Jr Jr . . . Jr
...

. . .
...

...
...

. . .
...

0 . . . 0 Jr − Ir Jr Jr . . . Jr
. . .

. . . . . .
. . .

. . .

Jr Jr . . . Jr Jr − Ir 0 . . . 0
Jr Jr . . . Jr 0 Jr − Ir 0
...

...
. . .

...
...

. . .
...

Jr Jr . . . Jr 0 . . . 0 Jr − Ir




The adjacency matrix A has k2 blocks, where the diagonal blocks are Ip⊗ (Jr− Ir)
and the other blocks are all Jp ⊗ Jr. If we consider A, the adjacency matrix of
complement of the graph, then A = (Ik ⊗ (Jp − Ip)) ⊗ Jr. Therefore Cay(G,S) is
integral and G is not a CIS-group.

Case 5. The group G is a finite non-abelian group and H is a proper normal

subgroup of G such that
G

H
is of prime order p. By the case 3 we may assume that

all elements of order p belong to H. It follows that H is not of prime order.

Suppose that
G

H
= 〈bH〉 and o(b) = m. Then bp = h and o(h) =

m

gcd(p,m)
>

1. Set
m

gcd(p,m)
= qi for some prime number q. It is evident that

G = H ∪ bH ∪ · · · ∪ bp−1H.

Set
S = bH ∪ · · · ∪ bp−1H ∪ 〈h1〉 \ {e},

where h1 = hi. Furthermore, S = S−1 since H is normal in G. If 〈h1〉 = {e}, then
hi = e but this is a contradiction as the order of h is qi. It implies that 〈S〉 = G
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since the order of S is greater than
|G|

2
. On the other hand, if 〈h1〉 = H, then

|H | = q and it is not the case since the order of H is not prime. Therefore G \ S is
not a subgroup of G. Set |H | = k and consider the adjacency matrix of Cay(G,S)
with the labeling {H, bH, . . . , bp−1H}, where H = {h1, h2, . . . , hk} is fixed by the
indices.

B =




A Jk . . . Jk Jk
Jk A . . . Jk Jk
...

. . .
...

...
Jk Jk . . . A Jk
Jk Jk . . . Jk A




where A is the adjacency matrix of Cay(H, (〈h1〉\{e})). If x1x
−1

2
∈ 〈h1〉\{e}, then

x1x
−1

2
= ht

1, 1 ≤ t < q and it follows that for every natural number 0 ≤ r ≤ p− 1,

brx1x
−1

2
b−r = brht

1
b−r = br(bpi)tb−r = (bpi)t = ht

1
= x1x

−1

2
.

Therefore the diagonal of matrixB is A. If we consider the complement of Cay(G,S),
then it is obvious that it is integral and therefore Cay(G,S) is integral. As a con-
sequence, G is not a CIS-group.

4. FINITE NON-ABELIAN SIMPLE GROUPS WHICH ARE NOT
CIS-GROUPS

In this section we prove that there exists an infinite family of finite non-
abelian simple groups which are not CIS-groups. This means that if G is a simple
group, then we can not conclude that it is a CIS-group in general.

Another point that should be explained is as follows: Given the background
that in finite abelian groups the union of any two cyclic subgroups create integral
Cayley graph, the reader may ask why one could not just pick two cyclic subgroups
(maybe place some restrictions on their orders) and join their generating sets into
one subset S. Wouldn’t this most probably yield some interesting integral Cayley
graphs in the case that G is simple? The answer in general is negative: Let G be
any finite group of order greater than 24 which is generated by an involution a and
an element b of order 3, then Cay

(
G,

(
〈a〉 ∪ 〈b〉

)
\ {e}

)
is a connected 3-regular

graph which is not integral. This is because the order of a connected integral
cubic Cayley graph is at most 24 (see Theorem 1.1 of [1]). On the other hand, the
number of such groups G with the mentioned generating set {a, b} abound, e.g. the
alternating group An for n ≥ 3 has such a generating set whenever n 6∈ {3, 6, 7, 8}
(see [12]).

The main result of this section is the following.

Theorem 4.10. Let G be a finite group and H, K be its proper subgroups such

that HK = G and H ∩K = {e}. If there exists an integral Cayley graph Cay(H,S)
such that S ∪ {e} is not a subgroup of H, then G is not a CIS-group.

Proof. Suppose that Cay(H,S) is integral. Then we claim that Cay(G,S) is
integral. Define
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ϕ : Cay(H,S)× Cay(K,∅) → Cay(G,S) and (h, k)ϕ = hk,

where the multiplication of the left side of the map is cartesian product of two
graphs. It is trivial to see that ϕ is surjective since HK = G and therefore it is
bijective since the order of Cay(H,S)×Cay(K,∅) and Cay(G,S) are equal as G =
HK and H ∩K = {e}. Suppose that (h1, k1) is adjacent to (h2, k2). Then k1 = k2
and h1h

−1

2
∈ S. It follows that h1k1k

−1

2
h−1

2
∈ S and therefore h1k1 is adjacent to

h2k2. On the other hand, if h1k1 is adjacent to h2k2, then (h1, k1) is adjacent to
(h2, k2) since the two graphs are regular of the same degree and if (h1, k1) is adjacent
to (h2, k2), then h1k1 is adjacent to h2k2. Thus Cay(H,S)×Cay(K,∅) ∼= Cay(G,S)
and furthermore Cay(G,S) is integral. But the complement of Cay(G,S), i.e.
Cay(G, (G \ S) \ {e}) is integral. Additionally, it is connected since Cay(G,S) is
disconnected. On the other hand, S ∪ {e} is not a subgroup of G as it is not a
subgroup of H. Therefore G is not a CIS-group.

Remark 4.11. One must note that proper subgroups H and K with the given property:

G = HK and H ∩K = {e}

are not necessarily unique; e.g., the symmetric group on degree 3, one has

S3 = 〈(1, 2)〉〈(1, 2, 3)〉 = 〈(1, 3)〉〈(1, 2, 3)〉 = 〈(2, 3)〉〈(1, 2, 3)〉.

The topic of “products of groups” is widely studied. The reader may look for some further
details the book [5].

The following corollary shows that there exists a family of finite non-abelian
simple groups which are not CIS-groups since the alternating group An, n ≥ 5 is
simple.

Corollary 4.12. The alternating group An is not a CIS-group, where n ≥ 5 is

prime.

Proof. Suppose that n ≥ 5 is a prime number. Then An = An−1K, where
K = 〈(1, 2, . . . , n)〉 and An−1∩K = {e}. If S = An−1 \An−2, then Cay(An−1, S) is
integral and S ∪ {e} is not a subgroup of An−1. Therefore by the previous theorem
An is not a CIS-group.
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