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STABILITY ESTIMATES FOR DISCRETE HARMONIC
FUNCTIONS ON PRODUCT DOMAINS

Mary Guadie

We study the Dirichlet problem for discrete harmonic functions in unbounded
product domains on multidimensional lattices. First we prove some versions
of the Phragmén-Lindel6f theorem and use Fourier series to obtain a discrete
analog of the three-line theorem for the gradients of harmonic functions in
a strip. Then we derive estimates for the discrete harmonic measure and
use elementary spectral inequalities to obtain stability estimates for Dirichlet
problem in cylinder domains.

1. INTRODUCTION

We consider functions defined on subsets of the multidimensional lattice
(6Z)™ in R™. The usual (2m + 1)-point discretization of the Laplace operator
is denoted by A, or As,,, to emphasize the mesh of the lattice, while the accurate
definition is given below. Then we study the following Dirichlet problem

Apu=0, u=fondD, wue H,D),

where Hy(D) is some class of functions of bounded growth in D, and D is an
unbounded connected (on the lattice) subset of (§Z)™. Our main question is for
which Hy(D) the problem above has a unique solution. Moreover, when the solution
is unique we estimate how the error in the boundary data affects the error of the
solution. Such estimates are called conditional stability estimates, we suppose a
priori that solution belongs to Hy(D). Since our problem is linear, stability estimate
reduces to a bound of some norm of the solution u € H,(D) by some norm of its
boundary values f.
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First, we prove that if D = Q x R¥, where Q is a bounded domain in R”,
u(zx,y) is a discrete harmonic function in D N (5Z)n+k that satisfies

lu(z,y)| < Cexp(cllyl1)

for some ¢ = ¢(Q, k), and u = 0 on 9D then v = 0 (here and in what follows ||y|j; =
ly1|+ -+ |yxl, and [|ylloc = max {|y1], ..., |yx|} where y = (y1,...,yx) € RF). We
refer to this statement as a discrete version of the Phragmén-Lindel6f theorem, it
implies the uniqueness in the Dirichlet problem in the class of functions of limited
growth.

We consider more carefully the case © = [0, 1] and solve the Dirichlet problem
using Fourier analysis when the boundary data is in £2. We obtain

[u(z, e < N1fle-

We also use this technique to show that gradients of discrete harmonic func-
tions satisfy the following three-line inequality that resembles three-line theorem of
Hadamard,

(1) IVu(ok, )llezzr) < ([[Vul(0, YD ([ Vu(6M, ),

where (M + 1)§ = 1. Both the Phragmén-Lindel6f theorem and Hadamard’s three
line theorem are classical results in complex analysis (for example see [18]). We
discuss discrete version of their multidimensional generalizations, corresponding
continuous results are known and we provide the references throughout the text.

Finally, to obtain conditional stability estimates for Dirichlet problem with
partial boundary data (see Theorem 5), we study the discrete harmonic measure
in the truncated cylinder Q x [—N, N]. We also use elementary properties of the
spectrum of the discrete Dirichlet problem for the Laplacian on §2 and some com-
parison results that can be found in T. BivikoGLU, J. LEYDOLD, P. F. STADLER
[2] and D. CvETKOVIC¢, P. ROWLINSON, S. StmIC [8].

The article is organized as follows. In the next section we give necessary
definitions and results for discrete harmonic functions, including basic properties of
the eigenvalues and eigenfunctions of the discrete Laplace operator with Dirichlet
boundary condition. We also prove a simple version of the Phragmén-Lindel6f
theorem for product domains. In Section 3 we use Fourier analysis to study discrete
harmonic functions in a strip, in particular we obtain the logarithmic convexity
inequality (1). Our main stability result for the Dirichlet problem in an infinite
cylinder is proved in the last section, it follows from estimates of discrete harmonic
measure and a more accurate version of the Phragmén-Lindel6f theorem.

2. PRELIMINARIES

2.1. Discrete harmonic functions

The theory of discrete harmonic functions on the lattices dates back to at least
as early as 1920s, when fundamental works of H. B. PHILLIPS and N. WIENER
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[17], and R. CoUuRrRANT, K. FRIEDRICHS, and H. LEWY [6] were published. In
the middle of the last century an important contribution to the theory of discrete
harmonic functions was done by H. A. HEILBRONN [10] and R. J. DUFFIN [9].
One of the original motivations for the study of discrete harmonic functions is that
such functions converge to continuous ones. For example to obtain a solution of
the Dirichlet problem one may solve discrete problems in lattice domains and pass
to the limit as the mesh size of the lattice goes to zero, we refer the reader to the
classical works mentioned above and to the article of I. G. PETROWSKY [16].

Suppose that u(z) is a function defined on a subset of the lattice (6Z)™. Then
the o-discrete Laplacian of u is defined by

Asu(z) = Agsmu(r) =072 (Z (u(z + de;) + u(z — de;)) — 2mu(:v)> ,

Jj=1

where ey, es, ..., e, is the standard coordinate basis for Z™ and —As coincides with
the combinatorial Laplacian of the lattice where the conductance associated to each
edge equals 6~2. This is the discrete version of the Laplace-Beltrami operator in
Riemannian manifolds. We refer the reader to T. BivikoGLu, J. LEYDOLD, P. F.
STADLER [2] for the details. Potential theory on finite networks is an active area
of investigation, see for example [1] and references therein.

Definition. A function u is called §-discrete harmonic at a point x of the lattice
(6Z)™ if it is define at x together with all its neighbors and satisfies the equation

Asu(z) = 0.

So the value of a discrete harmonic function at a lattice point is the average of its
values at the 2m neighboring points.

Discrete harmonic functions share many properties of continuous ones. For
example results on the maximum principle, solution to the Dirichlet problem,
Green’s function, and Liouville’s theorem can be found is the very first articles
on the subject, see also Y. COLIN DE VERDIERE [5] and C. KISELMAN [12] for
more recent surveys and more general discrete structures. On the other hand not all
results about continuous harmonic functions are easily generalized to the discrete
case. For example zero sets of discrete harmonic functions are difficult to compare
to those of continuous ones. For any finite square there exists a discrete harmonic
polynomial that vanishes at each lattice point of this square. We study growth
properties of discrete harmonic functions in cylinders and strips and provide accu-
rate estimates that show to which extend continuous theorems can be generalized
to solutions of the discrete equation that arises in the simplest numerical scheme.

We consider discrete harmonic functions on subsets of (6Z)™, D° C (6Z)™ is
called a (discrete) domain if it is connected, i.e., for any two points = and y in D?
there exists a sequence {zg,z1,...,2s} such that g = x, r5 =y, x; € D%, x; and
xj41 are neighboring points of the lattice (6Z)™.
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A point z € (6Z)™\ D° is called a boundary point of D° if at least one of the
2m neighbors of z is in D°. We denote the set of boundary points of D? by 0D?,

—5
we also use the notation D° = D% U dD?. A domain is called finite if it contains
only finite number of points, otherwise it is called infinite.

Definition. A function u defined on D° U OD? is called §-discrete subharmonic
(superharmonic) in D° if Asu >0 (< 0) in D?.

Clearly, a function is é-discrete harmonic in D? if it is both é-discrete subhar-
monic and superharmonic. The following maximum principle holds (see for example
[12]).

Theorem. If u is §-discrete subharmonic in a finite domain D then

maxu = maxu.
D oD

Simple examples show that the maximum principle does not hold for infinite
domains.

2.2. Eigenvalues and eigenfunctions for the discrete Laplacian

In order to prove a version of the Phragmén-Lindelof theorem for discrete sub-
harmonic functions in cylindrical domains, we need some basic facts about eigen-
functions and eigenvalues of the discrete Dirichlet problem for the Laplacian on the
base of the cylinder. For more general theory of graph spectra we refer the reader
to D. CVETKOVIC, P. ROWLINSON, S. SIMIC [8] and F. R. K. CHUNG [4, ch 1].

Throughout the paper 2 denotes a bounded domain in R™ n > 1, with
Lipschitz boundary and Q° = QN (§Z)". We always assume that § < &y is small
enough such that Q7 is a discrete connected set. We study é-discrete harmonic

functions that are defined on the product domain D°(Q) = Q' x (6Z)* and vanish on
the boundary. We consider the eigenvalues {A;(€2)} of the continuous n-dimensional
Dirichlet problem for the Laplacian on €2 and the eigenvalues of the corresponding
discrete operators. We denote the eigenvalue for the discrete Dirichlet problem on

56 by )\g (Q‘;) and we use the notation A> when it does not lead to confusion. It is
known (see for example [2] or [8]) that the eigenvalues of the following problem

—Asnf=Af in QF
f=0 on 02°

are positive, 0 < X\ < Ay < --- < )\ﬁ(é, the first eigenvalue is simple and the corre-
sponding eigenfunction f{ can be chosen strictly positive in Q°. The last statement
is an analog of the classical result on the first eigenfunction of Dirichlet problem
for the Laplacian, see R. COURANT, D. HILBERT [7, §6, ch VI]. For the discrete
operator it follows from the Perron-Frobenius theorem on positive matrices, see for
example [2, Corollary 2.23]. Clearly K? is finite in the discrete case and equals the
number of points of Q7.
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It is also known that A2 (Q%) — A\, () as § — 0. We don’t discuss the limits
arguments in this article, but we indicate which of our estimates survive the limit
passage as § — 0.

The eigenvalues ) (Q29) are given by the following minimax principle, see [2,
Corollary 2.6],

, L¢
A (Q°) = min max M
weW), 0#£gcw <g, g>

3

where W}, denotes the set of subspaces of dimension at least k& and L?ls is the §-
discrete Laplacian of Q with Dirichlet boundary condition. This readily implies
that if Q' D Q then

(2) M) < X(Q).

We denote by N§ the counting function, N3(A) equals the number of eigenvalues
A () that are less than or equal to A. Then (2) implies

3) No(A) = NG(N).
2.3. Eigenvalues for the cube

We need some estimates of the growth of the eigenvalues A?(Q) to prove a
precise version of the Phragmén-Lindel6f theorem in the last section of this article.
We obtain them by comparing the eigenvalues to those of a large cube () containing
Q. The latter can be found explicitly. Let Qr = (0, R)", where R € N and let
M =1/ € N. We consider the following problem

—Asnf=Af in Q%
f=0 on 862‘15%

This is an eigenvalue problem for a matrix of the size (RO —1)" x (RO~ — 1),
Let J={1,2,...,R6" ' — 1}, for any k € J", k = (k1,...,k,) the function
k.
[y, .. xn) = H sin ]—W:vj
is an eigenfunction and the corresponding eigenvalue is

[ —2 E J
)\_k_25 <n—j 1COS R )

Using the elementary inequality 1 — cosz > 27222, when = € (0, 7) we obtain

3 -2 2
N >4RT2Y K.

Jj=1
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For the details of eigenvalues and eigenfunctions for the cube we refer the reader
to F. R. K. CHUNG [4, ch 1].
The following inequality for the counting function for the cube follows

(4) Ng () < Cu(R)YA™2 + 1),

where the constant does not depend on §. This inequality is an illustration of the
Weyl’s asymptotic for the counting function for eigenvalues of Dirichlet problem
for the Laplacian.

2.4 Phragmén-Lindelof theorems in cylindrical domains

Let © be a bounded subdomain of R" and D° = Q% x (§Z)*. Clearly,
A(s-,n‘HCu(Ia y) = A&nu(ﬂ?, y) + A&kU(I, y)v

where the first Laplacian is obtained with respect to z-variables and the second with
respect to y-variables. Let f{ be the first eigenfunction of the Dirichlet problem
for the Laplacian in Q° defined above. As we noted, f{ is strictly positive on Q°,
and we have the following positive harmonic function in D°

u‘s(x, y) = f{s(x) cosh bsy; cosh bgys . . . cosh bsyg,

where b; is the only positive solution of
1
(5) cosh 0bs = 1+ %62)\‘15 :

In the discrete setting the function f¢ is strictly positive; this makes the proof of
our first theorem of Phragmén-Lindel6f type more simple than the proof of a similar
result for continuous functions, see for example I. MiyamoToO [15], F. T. BRAWN
[3] and D. V. WIDDER [19].

Theorem 1. Let v be a §-discrete subharmonic function in D% such that v <0 on
00N x (6Z)F. Let X be the first eigenvalue of the 6-discrete Dirichlet problem for
the Laplacian in Q and bs be the positive solution to the equation (5). Suppose that

v(z,y) < o(1) exp(bs|lyll1), when [yl — oc.

Then v < 0 on D°.

Proof. We want to compare v(z,y) to a multiple of u’(x,y) on Q° x [N, N]k.
On the part of the boundary 92° x (6Z)* we have v < 0 and u’ = 0 because f =0

on 99%. On the other part of the boundary, ||ly|j; > N and

2kC'y

)
——u’(z
mings ff (@ y),

v(z,y) < Cn exp(bslyll1) <

where Cny — 0 as N — oo.
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The maximum principle for subharmonic functions implies that

2kC
o(r,y) < ——zu’(r,y), wherex €2, y € (02)", |lyllo, < N.
mings f7
Now if we fix (z,y) and let N grow to infinity, we obtain v(z,y) < 0. O

The theorem holds for subharmonic functions with all estimates from above
only. If we have a discrete harmonic function h and apply the above statement to
h and —h we obtain the uniqueness for the Dirichlet problem in D? in the class of
functions

Hy(D°) = {u: D’ = R: |u(z,y)| = o(exp(bs]|yll)); yll, = oo}
Corollary. Let u and v be 6-discrete harmonic functions on D°, u,v € Hy(D?). If

u=1v on A(N) x (§Z)* then uw=v on D°.

Proof. Let g = u — v. Then g is d-discrete harmonic in D° and g = 0 on 9(92?) x
(6Z)%. Moreover |g(z,y)| < |u(z,y)| + |v(x,y)| and therefore

l9(z,y)| < Cn exp(bsllyll1), when [jyl[s > N,

where Cy — 0 as N — oco. Then g < 0 on D? by Theorem 1. In the same way we
obtain —g < 0 and thus u = v. O

We note that bs — /A1(Q)/k when § — 0, however Theorem 1 does not
survive a limit argument as § — 0. In the last section we provide an estimate for
0-discrete harmonic functions in truncated cylinders that allows us to prove a more
accurate version of the Phragmén-Lindel6f theorem.

3. DISCRETE HARMONIC FUNCTIONS ON STRIPS

In this section we study quantitative uniqueness for discrete harmonic func-
tions and their gradients on strips S = (0,1) x R™. We remark that eigenvalues of
the discrete Dirichlet problem for the Laplacian on [0,1]° are

AN =2672(1 — cos 2ml0).

In particular the Phragmén-Lindel6f theorem proved in the last section implies the
uniqueness in the Dirichlet problem for discrete harmonic functions that satisfy

(6) u(z, y)| = o(exp(bsllyll)), Ilyll; = oo,

where )
cosh 6bs = nt

1
— — cos 2mo.
n

3.1. Tempered harmonic functions in a strip

Now we consider tempered harmonic functions in the strip and use the Fourier
representation to solve the Dirichlet problem.
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Definition. Let u be a §-discrete function on S°, u is said to be tempered if

1/6

>N Juldk, 65)* < oo.

k=0 jezn

Theorem 2. Let u be a §-discrete harmonic function in S° such that (6) holds.
Suppose that

Z [u(0,65)]* < oo and Z lu(1,67)]° < oo.

JEZN JEZN
Then {u (6k,5j)}jezn € (2(Z™) for each k = 1,2,...,L — 1, i.e, u is tempered,

moreover
> Ju(k,65)P < Y u(0,67)1* + Y Ju(l,65)[%
JEZ™ JEL™ JEZL™
Proof. Let
o (t) =Y u(0,65)e™", and ()= Y u(l,d5)e’™"
JEL™ JEL™

for t € [0,1]™. Then g, pr € L*([0,1]").
For each t € [0,1]™ we define ¢(¢) such that ¢(t) > 1 and

q(t) +q(t) " =2(n+1) =2 cos2nt,.
=1

More precisely q(t) = A(t)++/A2(t) — 1 and then g(t) ™! = A(t) —/A2(t) — 1, where

At)=n+1- Zcos 27ty.
=1

Now for k=1,...,L — 1 we consider

q(t)* —q(t)"

g(t)Lk — q(t)~L+k
Y ORAs

O+ T g

®o (t)-

or (t) =
Since ¢ > 1, we have
qt)* —q(t)™" <q(t)" —qt)™", and q(t)"F —q(t) T <q(t)" —q(t) "

Then ¢y € L?([0,1]") and [|¢k|[2 < llpoll2 + [|¢L]l2- Thus

SDk(t) _ Z v(k,j)e%ij't,
JEZLN
where {v (k,j)},;czn € €% (Z") . Remark that

2
() = “gxgy e therelore ¢4 (0) = T
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Then ) 0
Pr—1 (t) + Yr41 (¢
t =
and
_ 1 S 2mity —2mity

Hence the Fourier coefficients v (k, j) satisfy

v (k,j) = vik+ 1) +vk—17)+ > (v(k,j—e)+v(kj+er)

2(n+1) —

It means that v is a discrete harmonic function on [1, L — 1] x Z". We have that
v(0,5) =u(0,d5) and v (L,j) = u(1,05). Note also that

2
o (e, DIF < D2 fo k) = lelFao,m < (0ol 2o + le2llzagom)

JjeZ™

Thus v (k, J) is bounded, in particular |v (k, j)| = o (exp(bs|ly|l1)) when |ly||1 — oo.
By Corollary in 2.4, we have v (k, j) = u (6k,dj) and {u (0k,07)};cz. € 02 (Zm)
with the required estimate.

REMARK. We have also proved that if u is a d-discrete harmonic function on S° that
is square-summable along the hyperplanes {dk} x (6Z)" then there exist two functions
a1,az € L?([0,1]™) such that

") u(@k,6) = [ (ar(a)" + aa(®a() ) e
[0,1]™
where ¢(t) > 1 and is defined by

qt)+q ') =2(n+1)—2 Zcos 2mty.
=1

Reviewing the computations in the proof of the lemma, we see that

oL (t) —q(t) "po(t) a(t) = a(t) po(t) — pL(t)
q(t)t —qt)-t q(t)t —q(t)~ L~

Thus the theorem provides a constructive procedure for solution of the Dirichlet

problem for tempered harmonic function in a strip as well as a stability estimate for this
procedure.

ail (t) =

3.2. Three line theorem for discrete harmonic functions

In this subsection we prove a three line theorem for the gradients of discrete
harmonic functions, the corresponding continuous result and its connections to the
interpolation theory can be found in S. JANSON and J. PEETRE [11].
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Definition. Let u(x,y) be a §-discrete function on a subdomain of the lattice
(8Z)" T, its discrete partial derivatives are defined by

w(ey) = 6 (u (o4 8,) — u(ey)  and
Uy, (‘Tvy) =o' (’U, (w,y + 661) —u (xvy))

For the case of the strip S = [0,1] x R™ all discrete partial derivatives in
y-variables are defined on the same domain, while w,, is defined on [0,1 — §] x R™.

Definition. The discrete gradient of a discrete function u(x,y) on a subdomain of
the lattice (6Z)"*! is defined as
VU(I, y) = (Uz(.f, y)a uy1 (Ia y)? uyz (.I, y)a sty uyn (Ia y))

Theorem 3. Let u be a 6-discrete harmonic function in [0,1] x R?, =1 = M +1
for some positive integer M. Suppose that u satisfies (6) and

{U(O, 5j)}_jeZ" € 62(Zn)7 {u(lv 5j)}_jeZ" € 62(Zn)
Let further

m(k) = 6 [[uz(5k, 61) 12 zn) + 6> Y g, (K, 64 [32 ) for k=0,1,..., M.
=1

Then . .
m(k) < (m(0))' =M (m(M)) M.
Proof. Using (7) and the definition of the discrete partial derivatives, we get
w(0h0) =07 [ (@@00 () =)+ ax(0g)H a0 - 1) e
0,1]"

and

[ue (8K, 57) |72 zny = 6 2lar(B)a(t)* (a(t) = 1) + az(B)a(t) " (a(®) ™" = Dl|Z2(0,11m)-
Further,

uy, (0k,65) = 07" o (a1(t)g)" + az(t)q(t) %) e 2™t (e 2™ — 1) dt,

[y, (0K, 05) |2 2y = 02 (ar ()g(8)* + az(t)q(t) ™) (e~ — 1) Z2((o,110)-
Then, adding up the identities above, we get

(8) m(k) = 6% |[us (5k, 55) |72 gy + Y lluty, (5K, 57) |72 )

/=1
= [lax(Da(®)* (a(t) = 1) + ax(Ha®) ™" (&) " = )3 011,

+ Z Hal(t)q(t)k (6_2”“’-’ — 1) + ag(t)q(t)_k (6_2”“ — 1)"?2([0)1],1) .
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We note that ¢(t) is real and by the definition q(t)+q(t)~! = 2(n+1)—2> _ cos 2xty,
=1
therefore

n

(9) (qt) = 1)(q(t) ™" = 1) =2 cos2mt, — 2n=—» (e > —1)(*™" —1).

/=1 =1

Finally,
(10) 8 m(k) = Jar (e (@) = D[220+ la20a®) @O = D320

! ; Jax(t)g(6)* (e — 1) ||i?<[o,11n> + [laz(B)g(®)=" (72 = 1) ||iz<[o,1m :

Each term in the right hand side of the last formula can be written in the form
s(k) = [|b(t)q(t)**||3 for some b € L2([0,1]") and q(t)** € L>°([0,1]"). By Hélder’s
inequality, we have

k k
B . 9 ) =7 ) M
) = 008 Ol < ([ p@Pat) ([ porewa)
< (5(0)' 7 (s(M)) T

Applying the same computation for each term and using the lemma below we
conclude the proof of the theorem.

Lemma 1. If each function my : [0,1,..., M] — Ry satisfies the inequality
Lk &
m (k) < [m (0)]" M [m (M)] M

then the sum m(k) = me(k) satisfies the same inequality.
¢

Proof. It suffices to prove the statement when m(k) = mq (k) + ma(k) is the sum
of two functions. Let @ = k/M, then we have

m(k) = ma (k) + ma(k) < ma (0)'~ma (M)* +ma(0)'~*ms(M)°
-otor-noione (60) () () (0]

And the lemma follows from the elementary inequality

xl—aya 4 (1 _ (E)l_a(l _ y)a S 1

when z,y € [0,1] and « € [0, 1].
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REMARK. The proof of Theorem 3 above is similar to that of the continuous three-line
theorem, see [11]. In the continuous case the passage from (8) to (10) is trivial, in discrete
case we fortunately have the identity (9).

For continuous harmonic functions similar three balls or three spheres theorems can
be obtain, see for example J. KOREVAAR and J. L. H. MEYERS [13] and E. MALINNIKOVA
[14]. There are no trivial generalizations of those results as a harmonic function can vanish
on any finite square without being identically zero.

4. HARMONIC MEASURE AND STABILITY ESTIMATES

In this section we study d-discrete harmonic functions that are defined on the
cylinder D?(Q2) = Q° x (§7Z). Discrete harmonic measure on truncated cylinder is
estimated first, then we apply these estimates to give a more precise version of the
Phragmén-Lindelof theorem and prove some stability results.

4.1. Discrete harmonic measure

Let now Ho(D?) denote the space of §-discrete harmonic functions on D?(€2)
that vanish on the boundary. Such function is uniquely determined by its values
on two layers Q° x {a} and Q7 x {b} (where it may attain arbitrary values) and the
dimension of Ho(D°) equals 2K°, where K° is the number of points in Q°.

We note that for a function u(x) = u(z’, 2,11) on D’(Q) we have

As (@’ Tny1) =
As (2, Tpgr) + S 2 (w2, g1 +6) +u(z!, xng1 — 6) — 2u(2’, 2pi1)).
Let { f,f }5251 be a sequence of eigenfunctions of the Dirichlet problem for the Lapla-

cian in 9, discussed in 2.2. Then it is easy to check that the following functions
form a basis for H(D°)

ug (z) = f(z') cosh(alzny1), vd(x) = f2(z')sinh(alzny1), k=1,2,...,K°,

where ai is the only positive solution of
1
coshdal =1+ 562)\2.

Now we calculate the discrete harmonic measure of the bases of a truncated cylinder.
Let g% be the d-discrete harmonic function on D%, (Q) = Q° x ([-N,N]n (6Z))
defined by its boundary values

g% (2, £N) =1 e’

g% (' 2nt1) =0 ' €00, —N < z,,1 < N.

Lemma 2. The harmonic measure g (x) = g% (2', xni1) is given by

cosh(aly,41)

K&
§ / 6 £ (.0
' xpr1) = d x )
osasn) = YL P
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where df = Z ()

' €QP

Proof. Clearly gfv is an even function with respect to x,; and therefore it can
be written as

(11) gN (2 Tng1) chfk ) cosh(agan 1),

where the coefficients C}, satisfy the linear system of equations

1= Z Crfl (") cosh(al N),

for each 2’ € Q9. Since functions {f) }5:61 form an orthonormal basis, we obtain

(12) Crcosha) N = Z oz = ds.

Substituting (12) in (11) we get the required formula. O

We conclude this subsection by one auxiliary inequality. We note that the
values of the function g% (', z,+1) on the middle hyperplane {x, 1 = 0} are given
by

1
=Y B () ———.
Z kfk(x)coshaiN

Then a linear combination of the values of u on Q° x {0} admits the following
estimate

KS
(13) > w(a)gi (@', 0) = sziw@/)ﬁf(m/)m

' z’' k=1
K5

|d5 1/2
Szcosha2N<Z|w > ’

k=

we applied the Cauchy-Schwarz inequality and used that eigenfunctions f are
normalized by Z |f(2")|? = 1.

4.2. Phragmén-Lindel6f theorem, improved version

Now we prove a version of the Phragmén-Lindel6f theorem for J-discrete
subharmonic functions in truncated cylinder D%, (). We want to show that if a
subharmonic function is positive inside the cylinder, say at some points on the
section Q° x {0}, then it grows at least exponentially. Moreover, we can give
estimates on the truncated cylinders and not only asymptotic result as in Theorem
1. We use the following notation u™ = max{0, u}.
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Theorem 4. Let u be a §-discrete subharmonic function on D3 (Q) such that
w(x', 2ny1) = 0 when o' € IQ° and u satisfies the following positivity condition on
Q x {0}

Z ut(2,0)? = A2K° > 0.

/€N’
—1

where ai =46 tcosh ™' (1+ l52/\2). In particular, there exists a constant Cq that

Then

l\>|§l>

14 B
(14) o0 XT?};@’N]U(CU s Tnt1)

depends only on ) such that

(15) s O u(2’, xnq1) > CoAexp(—ajN) ™",

for any N € N and any 6 < dg.

The inequality (14) is more precise than (15). We write the constant explicitly
and, as soon as )\i are known, the right hand side of (14) can be estimated. Clearly,
the right hand side of (14) is of order exp(ajN) when N — co. This is expressed
accurately in inequality (15). The constant Cq is not explicit, but it depends
neither on N nor on d, so we can also fix N and let § go to zero to get estimates of
continuous functions that can be approximated by discrete subharmonic ones.

Proof. Let My = max|,, ,j—n w(2',Zp41). Then by the maximum principle,
u(x/aInJrl) S MNg,(Z;V(I/aInJrl) on Qé X [_Na N] 5

where gfv is the harmonic measure from Lemma 2, clearly g?v > 0. Taking the
linear combination over ' € Q° with non-negative coefficients w(z’) = ut(2’,0)
and using (13), we obtain

1/2
@)
Zu z',0)? Zu ' ,0)ut(2',0) < My ZcoshakN<Z|u z',0)| ) .

Then we have

o) 2o\
Ma > +( 0)2)1/2 k — A(KO)V/2
N = (;u (27,0)%) ; coshal N (K7) ; cosha) N

Applying the Cauchy-Schwarz inequality, we get
1

Js(pan) () s

|| =

ka
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Now, we combine the last two inequalities and obtain

-1

K? 1
My > A -
N = ; coshaiN

Then (14) follows from the following inequality

To prove (15) we may assume that ¢ is small (otherwise we have an upper
bound for K°). We partition the eigenvalues )\2 into two groups. We choose a
positive number ¢ and define I; = {k: A} < 572} and Ir = {k: A} > 6 2}. Let
also ¢g = cosh™!(1 + ¢), then

Z exp(—ayN) < Z exp(—=6tegN) < K% exp(—6'coN) < Cpexp(—aiN),
kel kel

when § is small enough, since K° < C3~" and a — (/\1(9))1/2 as § — 0.

For the second part of the sum we have 64/ )\i < ¢. We consider the function
a: Ry — R, defined by

1
cosha(s) =1+ 552.
Then af = 5*104(51/)\2) and a simple calculation gives

2
NZErey

Denoting the minimum of the derivative of a on [0, ¢] by d, we obtain

a(s) =

af = af +d (D2 = (\)2).
Now we partition I; further into J; = {k : £ < (A))Y/2 — (A\)V/2 < £+ 1},

¢=0,1,... and let |J;| denote the cardinality of .J;. We consider any cube @ such
that Q C @ and apply inequalities (3) and (4) to obtain

WA gNg((( X3+ 041) ) gNg(((x{)% +z+1)2> < Ca(t+ 1),

for each £ =0,1,.... Finally, we get

S exp(—af) <3 3 exp(—afN) < 3 exp(—(a] + d)N)|

kel £=0 ke J, £=0

< Cqexp(—alN) Zﬁ—i—l exp(—¢dN).
=0
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The last sum is finite and can be bounded by a constant independent of N € N
and 4. This concludes the proof of the theorem. O

One of the differences between the continuous and discrete cases lies in the
formulas connecting eigenvalues A and corresponding numbers a. For the continuous
case one has a(\) = v/\ while for the discrete case the formula becomes

a’(\) =6 Lcosh™* (1 + %5%).

This function resembles v/A on the interval [0, c6~2] but grows as log A when A — oo.
To deal with the discrete case we have partitioned the set of eigenvalues into two
parts.

4.3. Stability estimates for solution of the Dirichlet problem

A standard argument shows that estimates of the harmonic measure imply
conditional stability estimates for harmonic function. We apply it for truncated
cylinders and prove the following

Theorem 5. Let h be a §-discrete harmonic function on DY, () with boundary
values f on Q% x [=N, N] and such that |h(z',+N)| < My. Then

(16) max |h(2',0)| < max|f| + Co(My + max |f|) exp(—alN).

In particular, if h is harmonic in D?(S2),
1@, ns1)| = o(exp(@lans]))  when [zsa| = o0

and h is bounded on the boundary O x (6Z) then h is bounded by the same constant
in D?(Q).

Proof. Let vy be the §-discrete harmonic function in the truncated cylinder
D%(Q) = (2 x (=N, N))? that solves the following Dirichlet problem

Api15v=0, v(z/,£N) =0, 2’ € Q0. and v(2', #py1) = f(@, 2ng1), @' € OQ°.

By the maximum principle for the bounded domain D%(), [v(x)| < max |f|. Then
u = h — v is d-discrete harmonic function on D3/ () that vanishes on the part
09Q° x [~N, N] of the boundary and satisfies

max |u(2’, pi1)] < max|f| + M.
Q9 x[—N,N]

We compare it to a multiple of the harmonic measure gjsv and use the estimate
9% (@’,0)| < Cq exp(—aiN)
that follows from the proof of Theorem 4. Then we obtain

lu(a’,0)| < Ca(My + max|f]) exp(—a} N).
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This implies (16). The second statement of the theorem follows from (16).
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