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MORE ON NON-REGULAR BIPARTITE INTEGRAL

GRAPHS WITH MAXIMUM DEGREE 4 NOT HAVING

±1 AS EIGENVALUES

Nair M.M. de Abreu, Krystyna T. Balińska, Slobodan K. Simić,
Krzysztof T. Zwierzyński

A graph is integral if the spectrum (of its adjacency matrix) consists entirely

of integers. The problem of determining all non-regular bipartite integral

graphs with maximum degree four which do not have ±1 as eigenvalues was

posed in K.T. Balińska, S.K. Simić, K.T. Zwierzyński: Which non-

regular bipartite integral graphs with maximum degree four do not have ±1 as

eigenvalues? Discrete Math., 286 (2004), 15–25. Here we revisit this problem,

and provide its complete solution using mostly the theoretical arguments.

The paper is dedicated to professor Dobrilo D- . Tošić on occasion of his 81st birthday.

1. INTRODUCTION

Let G = (V (G), E(G)) be a simple graph of order n (= |G|) and size
m (= ||G||). A(G) denotes the (0, 1)-adjacency matrix of G. Its spectrum is also
called the spectrum of G, and denoted by Sp(G) – note, it is real since A(G)
is symmetric. We assume that the eigenvalues of G are given in non-increasing
order: λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). Recall, λ1(G) is a simple eigenvalue if
G is connected. Moreover, if not told otherwise, all graphs to be considered
(but their subgraphs) will be connected. In particular, λ1(G) is called the in-

dex of G. For a given λ ∈ Sp(G), m(λ;G) denotes its multiplicity – note, since
A(G) is symmetric, the algebraic and geometric multiplicities of λ are equal. Let
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μ1(G) > μ2(G) > · · · > μr(G) and m1,m2, . . . ,mr, be the distinct eigenvalues of G
along with their multiplicities. Then, assuming that Sp(G) is a multiset, we write

Sp(G) = [μ1(G)
m1 , μ2(G)

m2 , . . . , μr(G)
mr ].

If G is bipartite, then its spectrum is symmetric with respect to the origin (see
[4, 6]). So ±μ are the eigenvalues of the same multiplicity. The equation Ax = μx
is called the eigenvalue equation for μ ∈ Sp(G). Any non-zero vector x satisfying

it is an eigenvector of the (labelled) graph G. Mk(G) =
n∑

i=1

λi(G)
k (k ≥ 0) denotes

the k-th spectral moment of G. It counts the total number of closed walks of length
k starting and terminating at vertices of G (see [4, 6]).

Pn and Cn denote the path and cycle of order n, respectively; Km,n is the
bi-complete graph on m + n vertices; in particular, Sn = K1,n−1 denotes the star
of order n. Let Γ(v;G) = {w : w ∼ v}; as usual, dv = deg(v) = |Γ(v;G)|, Δ(G) =
maxv∈V (G) dv and δ(G) = minv∈V (G) dv. A vertex of degree 1 is called a pendant

vertex. In particular, for trees, any other vertex is called an interior vertex. G− u

(G−U) denotes the subgraph of G obtained by deleting a vertex u (resp. a vertex
set U) from G. If U ⊆ V (G) then 〈U〉 denotes the subgraph of G induced by U.

H ⊆ G denotes that H is an induced subgraph of G (⊂ stands for a proper induced
subgraph). If H ⊂ G and U ⊂ V (G) \ V (H) then H + U = 〈V (H) ∪ U〉. G ∪ H

stands for the (disjoint) union of two graphs. Further on, if the graph name is clear
from the context, it will be omitted.

A graph is integral if its eigenvalues are integers. For all other facts from the
spectral graph theory (including integral graphs) the reader is referred to one of
the books [4, 6]. In this paper we solve the problem posed in [3]. The main result
of this paper reads:

Theorem 1.1. Apart from S5 (= K1,4), there are just three non-regular bipartite

(connected) integral graphs with maximum degree four which do not have ±1 as

eigenvalues (see Fig. 1.1).
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Figure 1.1. Three integral graphs

The rest of the paper is organized as follows: In Section 2, to make it more self-
contained, we include basic observations from [3] (and [1]). In Section 3 we develop
new ideas to be used in Section 4 for proving Theorem 1.1.
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2. PRELIMINARIES

Let S be the set of all connected integral graphs with maximum degree four
which are non-regular and bipartite. Note, if G ∈ S \ {S5} then Sp(G) = [3, 2a,
1b, 0c, (−1)b (−2)a, −3]. The case a = 0 was considered in [2] and settled in [7].
Here we concentrate on the case b = 0 and a > 0.1 The quest for these graphs (or
the corresponding set S ′) was initiated in [3]. If G ∈ S ′ then

Sp(G) = [3, 2a, 0c, (−2)a, − 3] (a > 0).

Here we want to study our problem just theoretically, and so to subsume the search
done in [7] by an exact algorithm which was very time consuming. However, this can
put forward further ideas for studying the class S (needless to say, the intermediate
goal can refer to the class with c = 0). Observe also that the graphs from S ′ are
of diameter at most 4 (since diam(G) ≤ |Sp(G)| − 1 for any connected graph – see
[6], p. 59).

The graphs from S ′ with at most 16 vertices (see Fig. 1.1) were found by a
computer search in [1] (and later in [7]). Here we pursue only those graphs with
at least 17 vertices, in order to show (almost theoretically) that, except the third
graph of Fig. 1.1, there are no others. Besides many observations found in [3]
(to be mentioned later), the most striking ones concern their order (n ≤ 29), size
(m ≤ 41, since a ≤ 8), their tentative degree sequences (see Table 1 therein). They
are determined by the triplets (ν4, ν3, ν2), where νi = |{v : dv = i}| (i = 4, 3, 2)
– so δ(G) > 1, as proved in [3]. There are 83 in total such triplets. One of them
(3, 14, 10) was not discarded in [3] by using Proposition 3.5(3o), as was confirmed
later by a simple program written in Oz, the language for constraint programming.
So just 82 triplets remained unresolved.

Let m, f, g, q, p, e, h denote the number of subgraphs of a graph G which are
depicted in Fig. 2.1 (identified by labels below them). Following [1] we have:

Lemma 2.1. Under the notation above, if G is bipartite then :

1o M2(G) = 2m;

2o M4(G) = 2m+ 4f + 8q;

3o M6(G) = 2m+ 12f + 12g + 48q + 6p+ 12e+ 12h.
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Figure 2.1. The graphs relevant to Lemma 2.1

1It is worth mentioning, that these two special cases are also relevant to some considerations
from [1] – see Proposition 2.4 therein.
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Note first that m = 4a + 9 (see 10 from above – recall b = 0). Therefore,
since G is bipartite and m odd, G contains, in each colour class, an odd number of
vertices of degree 3.

Lemma 2.2. Under the notation above, if G ∈ S ′ then

q = 5a+
1

4
(90− 16ν4 − 9ν3 − 4ν2) and ν3 ≡ 2 (mod 4).

Proof. By Lemma 2.1 (2o), we can express q in terms ofM4(G), m and f. Next we

have: M4(G) = 2(34+a24), m = 4a+9 and f =
n∑

i=1

(
di
2

)
=

1

2
(16ν4+9ν3+4ν2)−m.

So we easily get q; the rest follows from the integrality of q. �

The above lemma turns to be very powerful in discarding triplets (from Table
1 in [3]). Namely, since q is a non-negative integer, 39 triplets are eliminated at
once, which results in its reduced form, here addressed as Table 2.1.

a = 3 a = 4 a = 5 a = 6 a = 7 a = 8
n m = 21 m = 25 m = 29 n m = 33 m = 37 m = 41

17 1:(1,6,10) 5:(1,14,2) 23 24:(1,18,4)
2:(3,2,12) 25:(3,14,6)

26:(5,10,8)
27:(7,6,10)

18 3:(2,2,14) 6:(2,10,6) 24 28:(4,10,10)
7:(4,6,8) 29:(6,6,12)
8:(6,2,10) 30:(8,2,14)

19 4:(1,2,16) 9:(1,10,8) 25 31:(5,6,14)
10:(3,6,10) 32:(7,2,16)
11:(5,2,12)

20 12:(2,6,12) 14:(2,14,4) 26 33:(4,14,8)
13:(4,2,14) 15:(4,10,6) 34:(6,10,10)

35:(8,6,12)

21 16:(1,14,6) 27 36:(5,10,12)
17:(3,10,8) 37:(7,6,14)
18:(5,6,10) 38:(9,2,16)
19:(7,2,12)

22 20:(2,10,10) 28 39:(6,6,16) 41:(4,18,6)
21:(4,6,12) 40:(8,2,18)
22:(6,2,14)

23 23:(1,10,12) 29 42:(5,14,10)
43:(7,10,12)

Table 2.1. The reduced form of Table 1 from [3]. The entry format id:(ν4,ν3,ν2)

Lemma 2.3. Under the notation above, if G ∈ S ′ then

p+ 2(e+ h) = 114 + 4a+ ν3.(1)
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Proof. Expressing M6(G) in two ways, by definition, and by Lemma 2.1 (3
o), we

get 2(36+26a) = 2m+12f+12g+48q+12e+12h+6p. Since f =
n∑

i=1

(
di
2

)
and g =

n∑

i=1

(
di
3

)
, we obtain that f +g =

1

6

n∑

i=1

d 3
i −

1

3
m. Next

1

6

n∑

i=1

d 3
i = 43ν4+3

3ν3+2
3ν2.

Since q is given by Lemma 2.2, the proof easily follows. �

For convenience, let Ê = p + 2(e + h), while F̂ = 114 + 4a + ν3. So (1) is
equivalent to Ê = F̂ . Note, the right hand side of (1), i.e. F̂ is determined by the
parameters of each instance (i.e. of the corresponding triplet from Table 2.1). On
the other hand, its right hand side, i.e. Ê, cannot be determined in advance (since
p, e and h depend on the structure of G).

A graph G is reflexive if λ2(G) ≤ 2. The next result is taken from [8] (cf.
Theorem 3.2).

Lemma 2.4. Let G be a connected graph having v as a cut-vertex, and let G−v =
k⋃

i=1

Gi, where each Gi (i = 1, 2, . . . , k) is connected. If λ1(G1) ≥ λ1(G2) ≥ · · · ≥

λ1(Gk) then:

1o λ2(G) > 2, if λ1(G1) > 2 and λ1(G2) ≥ 2;

2o λ2(G) = 2, if λ1(G1) = λ1(G2) = 2;

3o λ2(G) < 2, if λ1(G1) ≤ 2 and λ1(G2) < 2.

In remaining cases there are no definite rules.

Recall the Smith graphs (Cn – E9, see Fig. 2.2) are connected graphs whose
index is equal to 2. Connected graphs whose index is less than 2, also called the
reduced Smith graphs (Pn – Z8, see Fig. 2.2) are the proper subgraphs of the Smith
graphs.

For short, let η(G) = m(0;G) denote the nullity of G. Then we have:

Remark 2.5. Recall η(C2i) is equal to 2 if i is even, or 0 otherwise. If T is a tree of
order n whose maximal matching has cardinality k, then η(T ) = n−2k (see [4], the Sachs
Theorem). So we have:

• η(G) = 3, if G = W2i+1 (i ≥ 2);

• η(G) = 2, if G = W2i (i ≥ 3), C4i (i ≥ 1), E8 and Y2i (i ≥ 3);

• η(G) = 1, if G = E7, E9, Y2i+1 (i ≥ 2), Z2i+1 (i ≥ 2) and P2i+1 (i ≥ 0);

• η(G) = 0, if G = C4i+2 (i ≥ 1), Z2i (i ≥ 2) and P2i (i ≥ 1).
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Figure 2.2. The Smith graphs2 and the reduced Smith graphs

3. FURTHER TOOLS

Here we study various spectral and structural properties of graphs from S
′

(or even S ). In view of computational results already mentioned, we will assume
further on that their order is at least 17.

3.1. Structural considerations

For any connected graphG, we introduce three types of partitions of its vertex
set (the first two of them were considered in [3] but with less generality).

R-partition. LetR be a proper subgraph ofG. Define Vi(R) = {u : dist(u, V (R)) =
i} (i ≥ 0); here dist(u, V (R)) denotes the distance between u and the closest vertex
in R. Clearly, V0(R) = V (R). Then

V0(R) ∪ V1(R) ∪ · · · ∪ Vd(R) (d ≥ 1)

is an R-partition of G with respect to R. Note, if V (R) = {r}, then the correspond-
ing partition (see [1]) is called the distance partition of G with respect to r (its
root). We also write V≤k(R) = {u : dist(u,R) ≤ k}, V≥k(R) = {u : dist(u,R) ≥ k}
and R∗ = 〈V≥2(R)〉.

U-partition. Let U be a proper subset of V (G), and let G−U = H0∪H1∪· · ·∪Ht

for some t ≥ 0 (here each Hi is connected). Then

U ∪ V (H0) ∪ V (H1) ∪ · · · ∪ V (Ht)

2Numbers attached to vertices of the Smith graphs are the entries of the eigenvector corre-
sponding to the index.
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is a U -partition of G with respect to U.

If G ∈ S , to choose U, we first observeH0 ⊂ G (usually H0 is a Smith graph),
and then take U = V1(H0), i.e. the set of the first neighbours of H0. Therefore
R = H0 and R∗ = H1 ∪ · · · ∪Ht, while G− U = R ∪R∗.

Using U -partitions we first prove:

Lemma 3.1. Given G ∈ S , let H0 ⊂ G be a Smith graph. Then

1o Each Hi (i ≥ 1) is a Smith graph or a reduced Smith graph;

2o |U | ≥ a+1− s, where s = s(U) is a number of the Smith graphs among Hi’s

(i ≥ 1);

3o if u ∈ U and Hi (i ≥ 0) is a Smith graph then u has a neighbour in Hi, and

s ≤ 3.

Proof. To prove 1o, it suffices to prove that λ1(Hi) ≤ 2 for each i ≥ 1. Suppose
to the contrary, i.e. that λ1(Hi) > 2 for some i. Let u ∈ U be a vertex adjacent to
some vertex from Hi, and let G

′ = G− U ′, where U ′ = U \ {u}. Then G′ contains
a component in which u is a cut-vertex, adjacent also to some vertex from H0.

But then (by Lemma 2.4(1o) applied on that component), and by the Interlacing
theorem (see, for example, [6], p. 17) we obtain λ2(G) > 2, a contradiction.

To prove 2o, observe first that the multiplicity of any eigenvalue of a graph
changes at most by 1 if any vertex is deleted (an immediate consequence of the
Interlacing theorem). Also, for any graph and each eigenvalue (say μ of multiplicity
k), we can find k vertices to be deleted to arrive at a subgraph in which μ is not
an eigenvalue anymore (see, for example, [6], p. 136). So if we delete from U all
vertices but one, and from each Hi (i ≥ 1) if it is a Smith graph one vertex, i.e.
|U | − 1 + s in total, then (by Lemma 2.4(3o)) we obtain a subgraph of G in which
μ = ±2 is not an eigenvalue at all. Therefore a ≤ |U | − 1 + s.

To prove 3o, suppose to the contrary, i.e. that Γ(u) ∩ V (Hi) = ∅ for some
u ∈ U and Hi, where Hi is a Smith graph for some i > 0 (otherwise, if i = 0,
we are done, by definition of U). If so, since G is connected, there exists a vertex
u′ ∈ U such that Γ(u′) ∩ V (Hi) �= ∅. Let Guu′ = 〈{u, u′} ∪ V (H0) ∪ V (Hi)〉. Then
u′ is a cut-vertex in Guu′ , and Guu′ − u′ contains two components H0 + u and Hi.

By Lemma 2.4(1o) λ2(Guu′ ) > 2, and by the Interlacing theorem λ2(G) > 2, a
contradiction. In addition, s ≤ 3 since Δ(G) = 4.

Lemma 3.2. If G ∈ S ′ and if H0 ∈ {C4, S5} then

1o Each pendant vertex of Hi (i ≥ 0) has a neighbour in U ;

2o s ≤ 2, where s = s(U) is the number of the Smith graphs among Hi’s (i ≥ 1);

3o |U | ≥ a− 1, with equality only if s = 2 (and then deg(u) ≥ 3 for each u ∈ U).

Proof. First, since δ(G) = 2, 1o immediately follows.
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To prove 2o, in view of Lemma 3.1(3o), we only need to prove that s �= 3.
On contrary, assume that s = 3. Then a ≤ |U | + 2 (by Lemma 3.1(2o)). On the

other hand, ||G|| =
3∑

i=0

||Hi||+ 4|U |+ ||〈U〉||. So 4a+ 9 = ||G|| ≥ 16 + 4(a− 2) + 1

(1 is added since ||G|| is odd). Therefore, ||Hi|| = 4 for each i < 3, |U | = a − 2,
and ||〈U〉|| = 0 (otherwise Δ(G) > 4). Consequently, ||H3|| = 5. So Hi ∈ {C4, S5}
for i < 3, while H3 = W6 (see Fig. 2.2). If Hi = S5 for some i < 3 then all
vertices in U are equi-coloured (otherwise, by Lemma 3.1(3o), Δ(G) > 4). But
then δ(G) < 2 (since W6 in the role of H3 has pendant vertices in both colours).
So H0 = H1 = H2 = C4. If a ∈ {3, 4, 5} then |U | ≤ 3, and δ(G) < 2 (at least
one pendant vertex in H3 = W6 is pendant in G). Otherwise, if a ∈ {6, 7, 8} then

|G| =
3∑

i=0

|Hi|+ |U | ≤ a+ 16, a contradiction (see Table 2.1).

The proof of 3o follows from 2o and Lemma 3.1(2o). �

If H0 ∈ {C4, S5} then G − U consists of t + 1 components (together with
H0), which are the Smith graphs or reduced Smith graphs (by Lemma 3.1(1o)).
Without loss of generality, let H1, . . . , Hs be the Smith graphs; so Hs+1, . . . , Ht are
the reduced Smith graphs. Let s∗ = s∗(U) be the number of the reduced Smith
graphs among Hi’s (so s∗ = t − s). We also write H∗

1
= Hs+1, . . . , H

∗
s∗ = Hs+s∗ .

Therefore, the following “graphical” representation of graphs from S ′ arises (see
Fig. 3.1).

H0

H1
. . . Hs H∗

1
. . . H∗

s∗

�
�

�
�〈U〉

� �

�

Figure 3.1. The structure of graphs G ∈ S
′ (or S )

In Fig. 3.1 an oriented line stands if each vertex from U has at least one
neighbour in the “terminal” subgraph (see Lemma 3.1(3o)); an unoriented line
stands if there are at least two edges between the subgraphs in question – note G

is 2-connected (see [3] Proposition 2.1). Some important subgraphs of G ∈ S , in
view of the above representation, are:

• R = H0, R
∗ = 〈V≥2(R)〉 =

[ s⋃
i=1

Hi

]
∪
[ s∗⋃
j=1

H∗
j

]
, and G− U = R ∪R∗;
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• 〈U〉 the core and HU = H0 + U (in particular Hu = H0 + u, where u ∈ U);

• Hi/j = 〈V (Hi) ∪ U ∪ V (Hj)〉 (0 ≤ i < j ≤ t; observe Hi/i = Hi + U).

Clearly, for a fixed H0 ⊂ G, U and Hi’s (i ≥ 1) are uniquely determined, and
therefore we can define the following numeric quantities:

• �(H0) = |U |;

• εc(U) =
s∑

i=1

(||Hi|| − |Hi|+1) – the number of cycles among Hi’s (1 ≤ i ≤ s);

• εu(U) = ||〈U〉|| – the number of core edges;

• cross(U ;Hi) = |{xy|x ∈ U, y ∈ V (Hi)| – the number of cross edges between
corresponding subgraphs;

• εv(U) =
[ s∑

i=0

(cross(U ;Hi)−|U |)
]
+
[ s∗∑

j=1

(cross(U ;H∗
j )−2)

]
– the total number

of “extra” cross edges;

• ε(U) = εc(U) + εu(U) + εv(U).

Note cross(U ;Hi) ≥ |U | (by Lemma 3.1(3o)); also cross(U ;H∗
j ) ≥ 2 (since G is 2-

connected). Further on we will omit H0 and U from our notation if it is understood
from the context.

Lemma 3.3. Under the notation above, if G ∈ S and if H0 is a Smith graph then

1o s∗ + ε = ||G|| − |G| − (||H0|| − |H0|)− s(|U | − 1);

2o
∑

u∈U

deg(u) = (s+ 1)|U |+ 2s∗ + 2εu + εv = (s+ 1)|U |+ 2(s∗ + ε)− 2εc − εv.

Proof. Using Lemma 3.1, by a simple counting (based on Fig. 4.1) we obtain:

||G|| = ||H0||+ [(s+ 1)|U |+ 2s∗ + εu + εv] +

[ s∑
i=1

(|Hi| − 1) + εc

]
+

[ s∗∑
i=1

(|H∗
i | − 1)

]
,

|G| = |H0|+ |U |+
s∑

i=1

|Hi|+
s∗∑
i=1

|H∗
i |.

So 1o follows, and also 2o by counting, at each vertex of U, the edges incident to
it. �

If v ∈ V (Hi) (0 ≤ i ≤ t), let jump(v) = deg(v;G) − deg(v;Hi). We say that
v is a jumper (non-jumper) if jump(v) > 0 (resp. jump(v) = 0). In addition, v is a
simple jumper if jump(v) = 1, and v is a k-jumper if jump(v) ≥ k.

Given G ∈ S ′, observe that U is not only a separating set for G, but also for
each Hi/j . Recall next that diam(G) ≤ 4. So any two vertices of G are at distance
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2 or 4 (or, 1 or 3), depending on colour classes they belong. So, if v ∈ V (Hi) and
v′ ∈ V (Hj) (0 ≤ i < j ≤ t) belong to opposite colour classes then at least one of
them is a jumper (otherwise diam(G) > 4). So we have:

Lemma 3.4. If G ∈ S ′ then :

1o if v ∈ V (Hi) (i ≥ 1) then dist(v, U) ≤ 2;

2o if diam(Hi) ≥ 5 then εu + εv ≥ 1;

3o if v ∈ V (Hi) is a non-jumper then each vertex v′ ∈ V (Hj) (j �= i) in opposite

colour is a jumper;

4o if v, v′ ∈ V (Hi) are non-jumpers in opposite colours then each vertex in V (Hj)
(j �= i) is a jumper.

Sketch proof. To prove 1o, assume that there exists v ∈ V (Hi) (i ≥ 1) such that
dist(v, U) ≥ 3. Let u ∈ U be a vertex such that dist(v, u) = dist(v, U). Then u

cannot be adjacent to all vertices of H0 (otherwise Δ(G) > 4). So diam(G) > 4, a
contradiction.

To prove 2o consider two vertices, say v and w, of Hi (i ≥ 1) at distance 5
(in Hi). Clearly, they are in opposite colours. So their distance in G is 3 (since
being non-adjacent). Now the shortest path among them in G should contain one
or two (adjacent) vertices in U, and the rest easily follows.

Finally, if 3o or 4o do not hold then diam(G) > 4, a contradiction. �

We now introduce the third partition to be used only in Section 4.

D-partition. Let V (i) = {v : deg(v) = i}. Then

V (G) = V (δ(G)) ∪ V (δ(G) + 1) ∪ · · · ∪ V (Δ(G))

is a D-partition of G. We also write D(i) = 〈V (i)〉.

Finally, needless to add, since the graphs in question are bipartite (so bi-
colourable), we can also observe yet another partition induced by the corresponding
colouring. In view of it, U can be partitioned as U = Ub ∪ Uw (so vertices in U

are either black or white). Let min(U) = min{|Ub|, |Uw|}. Further on, if not told
otherwise, we will assume that |Ub| ≤ |Uw|.

3.2. Bounds on p, e and h (see Fig. 2.1)

Recall Ê = p + 2e + 2h and F̂ = 114 + 4a + ν3 (see Lemma 2.3). For any
instance from Table 2.1 F̂ can be immediately computed, but not Ê (the whole
structure of a graph G ∈ S ′ is needed). So the best we can do then is to estimate
Ê by estimating the above three quantities.

(P) – lower bounds on p. Let p(e) be the number of paths in G ∈ S ′ of length
3 having e as the middle edge. If e = uv then p(e) = (du − 1)(dv − 1), while

p =
∑

uv∈E(G)

(du − 1)(dv − 1). So p is of the form x1y1 + x2y2 + · · ·+ xmym, where

m = ||G|| and the following conditions hold:
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(a) xi, yi ∈ {1, 2, 3}, since 2 ≤ dw ≤ 4 for any w ∈ V (G);

(b) if k ∈ {1, 2, 3}, then k is assigned in total to xi (1 ≤ i ≤ m) and/or to yj
(1 ≤ j ≤ m), fk = νk+1(k + 1) times.

Therefore, we are in fact taking from the multi-set F(G) = [3f3 , 2f2 , 1f1 ], in the
i-th draw (corresponding to the i-th edge of G) two elements at time to be assigned
to variables xi and yi (1 ≤ i ≤ m). Since the structure of G is not known (i.e. its
edges), as a natural relaxation in estimating p, we will minimize just the expression
of the form

Z = x1y1 + x2y2 + · · ·+ xmym, subject to (a) and (b).(2)

The following algorithm, more generally, minimizes Z by assigning the values
to xi’s and yi’s from a multi-set F of 2m (non-necessarily distinct) numbers.

The minMAX-algorithm (minimizes Z, given F containing 2m non-necessarily
distinct reals):

• Step 1: Set i← 1 and Z ← 0;

• Step 2: Assign to xi the smallest and to yi the largest element from F (say
m̂ and M̂, respectively); then set Z ← Z + xiyi and update F by removing
m̂ and M̂ from it;

• Step 3: If i < m then set i← i+ 1 and go to Step 2, or else stop.

To prove the optimality, observe first that any algorithm for valuating Z can be
structured as one above. The key decision appears in Step 2 (selection strategy).
So let us examine whether this strategy can be changed to decrease Z. For this
aim it suffices to consider Step 2 only in the first passing (then the rest follows
by recursion). Let m̂ and M̂ be the smallest and the largest elements from F ,
respectively. Then for some i and j we have that (xi, yi) = (ai, M̂) and (xj , yj) =

(m̂, bj). But then (ai−m̂)(bj−M̂) ≤ 0, or equivalently m̂M̂+aibj ≤ aiM̂+m̂bj . So

it turns that in the first passing we can take (x1, y1) = (m̂, M̂), and this guaranties
the optimality of our algorithm.

Remark 3.5. (i) It is easy to see that minimum of Z (i.e. Zmin) can be obtained,

provided F is an ordered list, by summing up the products of two members of the list

in symmetric positions (note, the length of the list is even). So minMAX-algorithm and

MAXmin-algorithm do the same.3

3It can be proved that maximum of Z (i.e. Zmax) can by obtained by adopting the MAXMAX,
or equivalently, the minmin strategy.

(ii) Usually, we can have some pre-requests, say, first to fix the values for certain pairs (xi, yi), and
then to put focus on the rest. For example, if F = {39, 25, 14} then Zmin = minMAX(F) = 42.
On the other hand, if the product “3 · 3” has to appear α = 2 times, while “3 · 2” β = 3 times,
then we first reduce F to F ′ = {32, 22, 14}, and obtain Z′

min
= 9α + 6β + minMAX(F ′) = 46.

Next, if the products “1 · 1” have to appear α∗ = 1 times, while “1 · 2” β∗ = 2 times, then we
first reduce F to F ′′ = {39, 23, 10}, and obtain Z′′

min
= 1α∗ + 2β∗ + minMAX(F ′′) = 50. It is

noteworthy that for both constraints imposed that Z′′′
min

= 50 (again!).
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Assume now that for a graph G ∈ S ′ we know that there are α edges of
degree (4, 4) (red edges), β edges of degree (4, 3) (blue edges), and also α∗ edges of
degree (2, 2) (yellow edges), β∗ edges of degree (2, 3) (green edges). Edges which are
coloured in red or blue will be addressed as RB-edges, while those which are coloured
in yellow or green will be addressed as YG-edges. In view of these colourings, and
Remark 3.5(ii), the input multi-set F = {34ν4 , 23ν3 , 12ν2} is reduced to

F ′ = {34ν4−2α−β , 23ν3−β−β∗

, 12ν2−2α∗−β∗

},

and then the minMAX-algorithm is applied on it. Let F (α, β, α∗, β∗) be the mini-
mum of the target function for a given values of its arguments. Then

F (α, β, α∗, β∗) = 9α+ 6β + 2β∗ + 1α∗ +minMAX(F ′).

We also write f(α, β) = F (α, β, 0, 0) and f∗(α∗, β∗) = F (0, 0, α∗, β∗). From the
above considerations we can immediately deduce the following constraints:

4ν4 − 2α− β ≥ 0, 3ν3 − β − β∗ ≥ 0, 2ν2 − 2α∗ − β∗ ≥ 0.

Observe also that f(α + 1, β) ≥ f(α, β + 1), and f∗(α∗ + 1, β∗) ≥ f∗(α∗, β∗ + 1)
if the latter constraints do hold. Note, by introducing the parameters α∗, β∗, we
have, in fact, plugged in the features of minmin or MAXMAX strategies in our
modified algorithm.

From the discussion above, if not told otherwise, we will assume that

(3) p ≥ max{f(α, β), f∗(α∗, β∗)},

over some constraints guaranteed by the structure of a tentative graph. In this
respect, observe that λ1(G) < 3 if α = β = 0 (namely, λ1(G) ≤ maxuv∈E(G)

√
dudv

– see, for example, [6], p. 241). Since f(α+1, β) ≥ f(α, β+1), if not told otherwise,
we will assume that α ≥ 0 and β ≥ 1.

(E) – lower bounds on e. Let Q1, Q2, . . . , Qq be the quadrangles of G. Denote
by e(Qi) the number of subgraphs (of G) obtained by adding to Qi a hanging edge.
Then e(Qi) = �(Qi) + κi, where �(Qi) = |Ui| and κi is the number of vertices in
Ui having just two neighbours in Qi (note, since G is bipartite, any vertex in Ui

can have at most two neighbours in Qi). Note, if κi > 0 then K2,3 ⊂ G. Next we
obtain

(4) e =

q∑
i=1

e(Qi) =

q∑
i=1

�(Qi) +

q∑
i=1

κi ≥ q�min + κ,

where �min = min1≤i≤q{�(Qi)} and κ =
q∑

i=1

κi. Note, if κi ≥ 1 for some i then κ ≥ 3

because then at least 3 quadrangles have the same property.

(H) – lower bounds on h. There are many ways in which hexagons can arise in
G ∈ S

′. To identify some of them, assume that H0 = C4. Let h(v) (h(e)) be the
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number of hexagons passing through vertex v (resp. edge e). More generally, let
h(H) be the number of hexagons in H (⊆ G); clearly, h(H) ≤ h(G).

(a) If vv′ ∈ E(Hi) (i ≥ 1) then h(vv′) ≥ jump(v) · jump(v′). Indeed, if v is a
jumper (and also v′) then v (resp. v′) is adjacent to at least one vertex in U,

which in turn is adjacent to at least one vertex in V (H0). Since neither of these
six vertices coincide (at each “level” they belong to opposite colour classes), and
since the encountered vertices in H0 are adjacent, we are done. In addition, if two
vertices in U are adjacent (so εu > 0) we then encounter an additional hexagon.
Therefore

(5) h ≥
∑

vv′∈∪t

i=1
E(Hi)

jump(v) · jump(v′) + εu.

It is also worth mentioning that some additional hexagons can arise by “aggregat-
ing” two quadrangles with just one common edge (as is the case if the number of
quadrangles in G is too large with respect to the order, or size G; more details will
be given in Section 4).

(b) Consider the distance partition of a vertex v. If we can find a vertex, say w,

in V3(v) so that two paths starting at v meet at w but not before, then a hexagon
arises. In the context of jumpers, if v ∈ V (Hi) (i ≥ 1) is a 2-jumper but not a
3-jumper, then either h(v) ≥ 2 (two vertices of H0 are in role of w), or otherwise
q(v) ≥ 1 (i.e. we encounter a quadrangle passing through v). Moreover if v is
3-jumper but not a 4-jumper then h(v) ≥ 4 and q(v) ≥ 1. Finally, if v is a 4-jumper
then h(v) ≥ 8 and q(v) ≥ 2.

(c) Let H ⊂ G. In many situations h(H) can be found just by a computer search.
In some discussions in Section 4 the following two graphs are of interest: A7 (it
is obtained from C6 by adding a vertex adjacent to three mutually non-adjacent
vertices of C6), and B8 (it consists of three copies of C4 having a common edge – a
book graph). They are small but h(A7) = 4, while h(B8) = 3 (each has three pairs
of quadrangles sharing a common edge). On the other hand, if two quadrangles
share two common edges (as in K2,3) then h(K2,3) = 0.

3.3. Further spectral tools

As already noted, the multiplicity of any eigenvalue of some graph changes
at most by one if any vertex is deleted. Consequently, if v ∈ V (G) and μ ∈ Sp(G)
then

m(μ;G)− 1 ≤ m(μ;G− v) ≤ m(μ;G) + 1.

Recall, v is the downer (neutral, Parter) vertex in G with respect to μ ifm(μ;G−v)
is equal to m(μ;G)− 1 (resp. m(μ;G), m(μ;G) + 1). The following result is taken
from [10] (see Corollary 3.2).

Lemma 3.6. Given a connected graph G in which v is a cut-vertex (so G − v =

∪i∈IHi, where each Hi is connected). Let ki = m(μ;Hi), where
∑

i∈I

ki > 0. Then v
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is the Parter vertex in G if and only if it is the Parter vertex in Hj + v for some

j ∈ I.

Observe next that in bipartite graphs there are no neutral vertices for μ = 0
(due to symmetry of the spectrum with respect to the origin). In view this we have:

Lemma 3.7. Consider a U -partition of a graph G ∈ S
′, with H0 = C4 and

|U | ≥ 3. Then

(6) η(G− U) ≥ |G| − 2a− |U |.

Moreover, η(G − U) and n− 2a− |U | have the same parity.

Proof. Assume first that each vertex of U is adjacent to just two vertices of H0.

But then λ1(H0 + U) > 3 (see Lemma 3.10) below). So there exists a vertex
u ∈ U adjacent to just one vertex of H0. Let Hu = H0 + u and U ′ = U \ {u}.
Then u is the Parter vertex in Hu (a computational observation4), and also in
G′ = G−U ′ (by Lemma 3.6 – observe the component ofG′ containing u). Therefore
η(G−U) = η(G′)+ 1. On the other hand, |η(G)− η(G′| ≤ |U |− 1, and (6) follows.
The “parity claim” follows since the nullity in bipartite graphs changes just by 1
each time a vertex of G is deleted from it.

Lemma 3.8. If H ⊂ G then

(7) η(H) ≥ |H | − 2a− 2.

If equality holds and if |H | ≥ 2a+ 2, then each vertex in V (G) \ V (H) is adjacent

to a vertex in V (H). In particular, if v ∈ V (Hi) ⊂ V (G) \V (H) then v is adjacent

to a vertex in U ∩ V (H).

Proof. Clearly, rank(A(G)) ≥ rank(A(H)). Therefore, |G| − η(G) ≥ |H | − η(H).
So the first claim follows since η(G) = |G| − 2a− 2. For the second claim observe
first that the vertices in V (G) \ V (H) belong to the star cell of G (for μ = 0) if
η(G) ≥ |G| − |H |, i.e. if |H | ≥ 2a+ 2 (see, for example, [5], Chapter 7). If so each
star complement of H is also a star complement of G. The rest immediately follows
from the domination property of vertices from star complements ([5], Theorem
7.3.1). �

The next result is taken from [9] (see Theorem 4.3). Since G ∈ S ′ is a
reflexive graph we can put some further constraints on it. Recall, any graph Hi

(i ≤ s) is a Smith graph (so with index equal to 2). Let xi be the eigenvector of
Hi corresponding to its index (see Fig. 2.2 for the entries of xi’s). If u ∈ U let

σi(u) =
∑

v∈Γi(u;G)

xi(v),

where Γi(u;G) = Γ(u;G) ∩ V (Hi). Note Γi(u;G) �= ∅ (see Lemma 3.1(3o)). Next
let

σi/j(u) = σi(u)/σj(u).

4For this aim, here and later, we will use newGRAPH [11] for similar computations.
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Lemma 3.9. Under the assumptions above, for any i and j (0 ≤ i < j ≤ s) we

have :

if σi/j(u
′) �= σi/j(u

′′) for some u′, u′′ ∈ U then λ2(G) > 2.

Equivalently, if λ2(G) = 2 then σi/j(x), as a function in x on U, is a constant.5

3.4. Some forbidden and/or constraint configurations

If a ≥ 6, as will be seen in Section 4, almost all instances from Table 2.1 can
be rejected without examining too much the structure of tentative graphs G ∈ S ′.

On the other hand, for a ≤ 5 and H0 = C4 it turns that we have to examine Hi’s
(i ≤ s). Then, since |U | ≥ a − 1 (by Lemma 3.2(3o)), it turns that cases with
|U | = 4 (or even those with |U | = 3) deserve special attention. In addition, we then
assume that a ≥ 4 (otherwise, if a = 3, the situation is rather simple). In what
follows we will need some results involving κ and h (see Subsection 3.2).

Lemma 3.10. Let Û = {x ∈ U : σ0(x) = 2}. Then |Û | ≤ 2, and if |Û | = 2 we

have:

1o if two vertices in Û belong to the same colour class then κ+h ≥ 6 and q ≥ 6;

2o if two vertices in Û belong to opposite colour classes then κ+h ≥ 7 and q ≥ 5.

Proof. Let H = H0 + Û . If |Û | ≥ 3 then λ1(G) ≥ λ1(H) > 3 and the first claim
follows. Next, 1o follows since H = K2,4 (then κ ≥ 6 since q ≥ 6). Finally, 2o

follows since H = K3,3 − e (note H �= K3,3 – otherwise λ1(G) > 3); next, κ ≥ 5
since q = 5, while h ≥ h(H) = 2.

Lemma 3.11. If a ∈ {4, 5} and |U | = 4 we have :

• if κ+ h ≥ 7 then Ê > F̂ for all instances (5− 23) from Table 2.1;

• if κ+ h = 6 then Ê > F̂ for instances above but (8) and (19).

Proof. From Subsection 3.2 we have that Ê ≥ (f(0, 1) + 2q|U |) + 2(κ + h). Here
f(0, 1) is computed by minMAX-algorithm (see Subsection 3.2); to compute q we
use Lemma 2.2 (see also Tables 4.8 – 4.12). Next we easily check that (f(0, 1) +
2q|U |) + 2(κ+ h) > F̂ under the imposed conditions. �

Since G is reflexive, the same holds for Hi/j ⊂ G (since reflexivity is a hered-
itary property). So a necessary condition for G to be reflexive is that the function
σi/j(x) is a constant on U (see Lemma 3.9). This fact we first consider in the next
lemma

Lemma 3.12. Let H0 = C4, H1 = C2k (k ≥ 2) and |U | = 4. If a ≥ 4 then

σ0/1(x) = 1. In particular, if k = 2 then σ0(x) = 1 (and also σ1(x) = 1).

Sketch proof. Assume first that σ0(x) = 1. Then σ1(x) = y (by Lemma 3.9). If
y = 1 we are done. Otherwise, if y ≥ 2 then εv ≥ 4. So ε ≥ εc + εv ≥ 5. On the

5Note, edges joining vertices in U do not have any influence in validity of the Lemma.
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other hand (by Lemma 3.3(1o)) ε ≤ s∗+ ε = ||G||− |G|−s(|U |−1) ≤ 5 if a ∈ {4, 5}
(see Table 2.1; note also that |U | > 4 if a ≥ 6 (by Lemma 3.2(3o)). Equality arises
only if a = 4, |G| = 17, s = 1 and s∗ = 0, a contradiction (since |G| cannot be
odd).

Secondly, assume that σ0(x) �= 1. Then σ0(u) = 2 for some u ∈ U. So
σ0/1(u) ≥ 1 (since deg(u) ≤ 4). On the other hand (by Lemma 3.10), there exists
u′ ∈ U for which σ0(u

′) = 1, and therefore σ0/1(u
′) ≤ 1. So σ0/1(x) = 1 (by Lemma

3.9), whence σ1(u) = 2. Finally, let k = 2 and σ0(u) = 2 for some u ∈ U. If so
σ1(u) = 2, and consequently λ1(G) > λ1(H0/1) ≥ 3, a contradiction.

Lemma 3.13. Let H0 = C4, |U | = 4 and a ∈ {4, 5}. Then Hi �= C4 (i ≥ 1).

Sketch proof. Suppose to the contrary, that H1 = C4. Then, by Lemma 3.12,
H0/1 (ignoring the edges in 〈U〉) should have at least one of the patterns from Fig.
3.2, but p9 − p11 (then, by Lemma 3.4(3

o), diam(G) > 4). To reject the remaining
patterns but p2, we will use Lemma 3.11. Note here that ν3 ≥ 4 for all instances in
question (i.e. 5− 23) but (8) and (19) (for them nu3 = 2; so they cannot contain
patterns which make ν3 greater than 4).
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Fig. 3.2. The (reduced) patterns of H0/1

(i) patterns p1, p3 and p7: Now h(H0/1) ≥ 7 (a computational observation) and
we are done.

(ii) pattern p2: Let Hv = H0/1 + v, where v �∈ V (H0/1) is a jumper. Then
Hv is feasible only if deg(v;Hv) = 2 and K2,3 �⊂ Hv (otherwise λ1(Hv) > 3 or
λ2(Hv) > 2). Let v′ be another vertex of G such as v (it exists since G is 2-
connected). But then λ1(Hv + v′) > 3, a contradiction.

(iii) pattern p4: Now h(H0/1) ≥ 3 (since min(U) = 1) and ν3 ≥ 4 (see Fig. 3.2).
So it suffices to prove that κ + h ≥ 6. Let u be a (unique) black vertex in U, and
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let Y = V (G) \ V (H0/1). There exists in Y a black vertex, say v, being a jumper
(otherwise, u is a cut-vertex in G). If jump(v) ≥ 2 or εu ≥ 2, then κ + h ≥ 6 and
we are done. Otherwise, we have:

If a = 4, let Hv = H0/1 + v, and observe that η(Hv) ≥ 3 (by Lemma 3.8).
On the other hand, η(Hv) = 3 (a computational observation). So it turns that
each vertex in Y is a jumper (by Lemma 3.8). If ||〈Y 〉|| ≥ 2 then four additional
hexagons arise. So h ≥ 7 and we are done. Otherwise, s∗ ≥ 4, and then s∗+ εc ≥ 5.
On the other hand, s∗ + ε = ||G|| − |G| − s(|U | − 1) ≤ 4 (by Lemma 3.3(10)).

If a = 5, then s = 2 (so κ ≥ 2), and H2 is a Smith graph. In addition, each
black vertex of H2 is a jumper (by Lemma 3.4(3

o)), and also at least one white. So
an additional hexagon arises, and κ+ h ≥ 6, as required.

(iv) patterns p5, p6 and p8: Now h(H0/1) ≥ 4 (since min(U) = 2), and ν3 ≥ 4 for
all patterns (see Fig 3.2). So it suffices to prove that κ+h ≥ 6. Let P be a shortest
path in G joining two distinct vertices of U, not passing through H0, nor H1 (so
HP = H0/1 + V (P ) is an induced subgraph of G). Let �(P ) be the length of P. If
�(HP ) ≤ 3 then two additional hexagons arise. So h ≥ 6, as required.

For p5, let �(P ) = 4. Then (by Lemma 3.8) η(HP ) ≥ 5 if a = 4, or η(HP ) ≥ 3
if a = 5. If a = 4 then η(HP ) = 3 (a computational observation). So a �= 4. If a = 5,
then all interior vertices of P are jumpers (see Lemma 3.8), again a contradiction.
If l(P ) ≥ 5 then η(HP ) ≤ 3 (a computational observation), while η(HP ) ≥ 4 (by
Lemma 3.8).

For p6, h(H0/1) ≥ 6 and we are done.

For p8, let �(P ) = 4. Then either κ ≥ 2, or otherwise η(HP ) = 5 (a compu-
tational observation) but only if a = 4. In the former case κ + h ≥ 6 and we are
done. In the latter case η(HP ) ≥ 5 (by Lemma 3.8), and thus the central vertex
of P which should be a non-jumper by the choice of P is a jumper (by Lemma
3.8). Finally, if �(P ) ≥ 5 then we encounter on P two adjacent non-jumpers, a
contradiction (by Lemma 3.4(4o)).

Lemma 3.14. Let H0 = C4 and a ≥ 4. Then Hi �= S5 (i ≥ 1).

Proof. Suppose to the contrary, that H1 = S5. Then min(U) = 0, for otherwise
Δ(G) > 4 (so all vertices in U are white). Clearly |U | ≤ 4, and |U | ≥ 3 with
equality if a = 4 and s = 2 (see Lemma 3.2(3o)).

Assume that σ0(x) �= 1. Then for some u ∈ U σ0(u) = 2. So σ1(u) ≤ 2
(note deg(u) ≤ 4), and σ0/1(u) ≥ 1. By Lemma 3.10, there exists u′ ∈ U such
that σ0(u

′) = 1, and therefore σ0/1(u
′) ≤ 1. So σ0/1(x) = 1 (by Lemma 3.9), and

σ1(u) = 2. But then we have: if |U | = 3 then a = 4 and s = 2, and therefore
deg(u) > 4; if |U | = 4, then some vertex in U cannot not have a (black) neighbour
in H0. So σ0(x) = 1, and we have:

If |U | = 3 then σ1(u) ≥ 2 for some u ∈ U (otherwise δ(G) < 2). But then
σ1(x) = y, where y ≥ 2. Next y < 3 (otherwise, deg(u) > 4, since s = 2). If
y = 2, then each vertex in U is of degree 4 (since s = 2). Let H be a subgraph of
G obtained by extending H0/1 by three cross-edges between U and H2. But then
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λ1(G) > λ1(H) > 3.

If |U | = 4 then σ0/1(x) = 1 (otherwise, σ1(x) = y, where y ≥ 2, and then
λ1(H0/1) > 3). So σ1(x) = 1, and this gives rise to the unique graph H0/1. Let
Hv = H0/1 + v, where v �∈ V (H0/1) is a jumper, and also a black vertex. Note
first that η(Hv) = 2 independently of deg(v;Hv) (a computational observation). If
a = 4 then η(Hv) ≥ 4 (by Lemma 3.8), and we are done. If a = 5 then η(Hv) = 2,
and (by the same lemma) each vertex in Y = V (G) \ V (Hv) is adjacent either to
v or to a vertex in U (depending on its colour class). Observe next that |Y | ≥ 6
(see Table 2.1). If all vertices in Y are black then each of them is a 2-jumper, and
then deg(u) > 4 for some u ∈ U. So each white vertex in Y is adjacent to v, and
also to each black vertex in Y (by putting it in the role of v). So 〈Y ∪ {v}〉 is a
bi-complete graph on at least 7 vertices, a thus λ1(G) > 3. �

For the sake of simplifications, in what follows we say that H0 is a minimizer

if, whenever H0, H
′
0
⊂ G and H0 = H ′

0
, then |U | ≤ |U ′|. Next we prove:

Lemma 3.15. Let H0 = C4, |U | = 4 and a ∈ {4, 5}. If H0 ⊂ G is a minimizer

then Hi �= W6 (i ≥ 1).

Sketch proof. Suppose to the contrary, that H1 = W6. Then we have:

(i) σ0(x) = 1. Then min(U) �= 0 (otherwise δ(G) < 2). If min(U) = 1 let u

be a (unique) black vertex in U. Then σ1(u) = 2 (other possibilities can be easily
rejected), and therefore σ1(x) = 2. But then κ+h ≥ 7 (a computational observation
obtained over all H0/1 patterns). So min(U) �= 1 (see Lemma 3.11).

If min(U) = 2 then σ1(x) = y, where y ≤ 2. If y = 1 then all vertices in
H0, and pendant vertices in H1, are jumpers, while both interior vertices in H1

are non-jumpers (see Lemma 3.4(4o)). So H0/1 is determined up to edges in 〈U〉.
Let a = 4. If εu ≥ 1 then η(H0/1) = 2 (a computational observation). On the
other hand, η(H0/1) ≥ 4 (by Lemma 3.8). If εu = 0, let Hv = H0/1 + v, where
v �∈ V (H0/1) is a jumper. Now η(Hv) = 3 (a computational observation). On the
other hand, η(Hv) ≥ 5 (by Lemma 3.8). So a �= 4, and let a = 5. If εu ≥ 1 then
η(H0/1) = |H0/1| − 2a− 2 (a computational observation), and therefore all vertices
in Y = V (G) \ V (H0/1) are jumpers. So h ≥ ||H2|| + 2εu ≥ 7, as required (note
||H2|| ≥ 5, by Lemmas 3.13 and 3.14). If εu = 0 let v and v′ be two adjacent
vertices in H2. Then, as before, we have η(H0/1 + v + v′) = 2 (so it is too small,
since η(H0/1 + v + v′) ≥ 4, by Lemma 3.8). If y = 2 there are several patterns for
H0/1, and then λ1(H0/1) ≥ 3 (if both interior vertices in H1 are non-jumpers), or
otherwise, κ+h ≥ 7 (a computational observation obtained over all H0/1 patterns).

(ii) σ0(x) �= 1. So σ0(u) = 2 for some u ∈ U. By Lemma 3.10, there exists u′ ∈ U

such that σ0(u
′) = 1. But then, by Lemma 3.9, σ1(u) = 2σ1(u

′). So σ1(u) = 2, and
σ0/1(x) = 1. Observe next that σ0(x) = 1 for all x ∈ U but u, since otherwise, by
Lemmas 3.10 and 3.11, we are done for all instances in question (with (8) and (19)
included by considering q, if necessary). In addition, we are done if u is adjacent to
an interior vertex in W6 (then δ(G) < 2). If u is adjacent to two pendant vertices
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in H1 then a quadrangle, say Q∗, arises with l(Q∗) ≥ 4, and we easily obtain that
κ ≥ 3, h ≥ 3 and q ≥ 5, as required.

Lemma 3.16. Let H0 = C4, |U | = 4, a = 4 and n ∈ {18, 19}. Then H1 �= Ck (k =
6, 8, 10).

Sketch proof. Suppose to the contrary, that H1 = Ck for some k ∈ {6, 8, 10}.
Then s = 1 (otherwise |H2| ≤ 5, an obvious contradiction). Observe next that
η(G−U) ≥ 6 (by Lemma 3.7). Since s∗+ ε = 22−n (by Lemma 3.3(1o)), it follows
that s∗ ≤ 3 (since εc = 1). But then η(H1) �= 0 (otherwise η(G − U) ≤ 5; see
Remark 2.5). Therefore, let H1 = C8.

(i) n = 18: Then s∗ = 2, and H∗
1
= H∗

2
= P1 (otherwise η(G − U) = 4 is too

small, i.e. less than 6). Therefore εu + εv = 1. By Lemma 3.9 σ0/1(x) = 1,
whence σ0(x) = 1 (otherwise εv ≥ 2). So σ1(x) = 1. Let v and v′ be the vertices
corresponding to H∗

1
and H∗

2
. If min(U) = 0 then εu = 0, and thus deg(v) = 3.

Also, by Lemma 3.4(4o), all jumpers in H1 are simple jumpers. Consequently,
h ≥ h(v) ≥ 6 (since h(H0+U)+v) ≥ 4, h((H1+U)+v) ≥ 2), and also ν3 > 2. But
then we are done (by Lemma 3.11). If min(U) = 1 then diam(G) > 4 (by Lemma
3.4(4o)). If min(U) = 2 then εv = 0, and deg(v) = deg(v′) = 2. In addition, all
vertices in H0 must be simple jumpers (by Lemma 3.4(4

o)). But then h ≥ 6 (since
h((H0 + U) + v), h((H1 + U) + v′) ≥ 3). So h ≥ 6 and ν3 > 2, and we are done as
before.

(ii) n = 19: Then η(G − U) < 7 unless s∗ = 3 and H∗
i = P1 for each i. But then

s∗ + εc ≥ 4, a contradiction.

Lemma 3.17. Let H0 = C4, |U | = 4, a = 4 and n ∈ {18, 19}. If H0 ⊂ G is a

minimizer then H1 �= Wk (k = 7, 8, . . . , 11).

Sketch proof. Suppose to the contrary, thatH1 = Wk for some k ∈ {7, 8, 9, 10, 11}.
Then, as in the proof of Lemma 3.16, s = 1, η(G − U) ≥ n − 12 ≥ 6 and
s∗ + ε = 22 − n ≤ 4. Also, s∗ ≥ 1 (otherwise η(G − U) ≤ 5). Therefore k ≤ 9 if
n = 18, and k ≤ 10 if n = 19. Since k ≥ 7 at least one interior vertex of Wk is a
jumper (see Lemma 3.4(1o)). Depending on the function σ0(x), we next have:

(i) σ0(x) = 1. By Lemma 3.9, σ1(x) = y, where y ≥ 2 (since σ1(u) ≥ 2). In addition,
y < 3 (otherwise s∗+εv ≥ 5). So y = 2 and σ0/1(x) =

1

2
. Consequently, each vertex

in U is adjacent either to two pendant vertices of Wk (so is of type (a)), or to at
least one of interior vertices of Wk (so is of type (b)). Clearly, at least two vertices
in U are of type (a), and at least one of type (b). Let H = (H0 ∪H1) + {u1, u2},
where u1, u2 ∈ U.

Let k be odd. Assume first that k = 7, and that u1 is of type (a) and gives rise
to a hexagon, while u2 of type (b). Then η(H) = 3 (a computational observation
over all patterns). But then equality holds in (7). So each vertex not in H is
adjacent to u1 or u2 (by Lemma 3.8), and therefore Δ(G) > 4. So each vertex of
type (a) (in U) gives rise to a quadrangle in H1 + U, and for each of them, say Q,

l(Q) ≥ 4 (since H0 is a minimizer). But then λ2(H1+U) > 2 (by Lemma 2.4(1o)).
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Secondly, if k = 9, assume that u1 and u2 are of different types. Then η(H) = 3 (a
computational observation over all patterns), a contradiction (η(H) ≥ 5, by Lemma
3.8).

Let k be even. Then, we can choose u1 and u2 to be of type (a), and in
opposite colours. Then two (separated) quadrangles arise in H, and consequently
we easily obtain (by Lemma 2.4(1o)) that λ2(H) > 2.

(ii) σ0(x) �= 1. Let Û = {x ∈ U : σ0(x) = 2}. Since |Û | ≤ 2 (by Lemma 3.10), there
exists u′ ∈ U \ U ′ with σ0(u

′) = 1. By Lemma 3.9, σ1(u) = 2σ1(u
′). If σ1(u) ≥ 4

then s∗ + εv ≥ 5 or deg(u) > 4. So σ1(u) = 2, and σ0/1(x) = 1. If |Û | = 2 then

s∗ + εv ≥ 5. Otherwise, if |Û | = 1 then δ(G) < 2, a final contradiction.

Lemma 3.18. Let H0 = C4, |U | = 4, a = 4 and n ∈ {18, 19}. Then H1 �= Ek (k =
7, 8, 9).

Sketch proof. Suppose to the contrary, that H1 = Ek for some k ∈ {7, 8, 9}. Then
s = 1, η(G − U) ≥ n− 12 ≥ 6 and s∗ + ε = 22− n (see the proof of Lemma 3.16).
Observe first that H1 �= E9 (then η(G − U) ≤ 5, by Remark 2.5). In addition, by
the same arguments, if H1 = E7 or E8 then each H∗

i is an isolated vertex, i.e. equal
to P1.

Let H1 = E7. For n = 18, s∗ = 3. So ε = 1. Consequently, if σ0(x) �= 1, there
exists in U a unique element, say u, such that σ0(u) = 1, while σ0(u

′) = 1 if u′ �= u.

Then σ1(u) = 2, while σ1(u
′) = 1. So diam(G) > 4 (see Lemma 3.4(4o); note also

that min(U) = 1). Otherwise, if σ0(x) = 1, then σ1(x) = y for some y ≥ 1; if y = 1
then diam(G) > 4 (see Lemma 3.4(4o); now min(U) = 0). If y ≥ 2 then εv ≥ 2, a
contradiction. For n = 19, s∗ = 4, and therefore s∗ + ε ≥ 4, a contradiction.

Let H1 = E8. For n = 18, s∗ = 2 and ε = 2.

Observe first that σ0/1(x) =
1

k
, where k ∈ {1, 2, 3, 4} (since εv ≤ 2). Let σi =

∑

u∈U

σi(u). So σ1 = kσ0. Next σ0 ∈ {4, 5} (otherwise, diam(G) ≥ diam(H1+U) > 4).

If σ0 = 4 then σ1 ∈ {8, 12} (other values are too small or too big). So k ∈ {2, 3}.
Next, for each u ∈ U, σ1(u) ≤ k. If k = 2 then all vertices in H0 must be jumpers
(by Lemma 3.4(4o); then, as well, min(U) = 2). But now, we easily obtain (see
Subsection 3.2(H)) that κ+h ≥ 7, a contradiction (by Lemma 3.11). If k = 3 then
diam(H0,1) > 4, a contradiction. If σ0 = 5 then σ1 ∈ {5, 10} (other values are too
big). So k ∈ {1, 2}. If k = 1 then min(U) = 0, and consequently Δ > 4. If k = 2
then, we easily obtain κ+ h ≥ 7, or otherwise diam(G) > 4. So η(G − U) ≤ 5 (by
Remark 2.5), a contradiction. For n = 19, s∗ = 3 and ε = 0. So σ0(x) = 1. On the
other hand, σ1(x) �= y, for any y ≥ 1 (see Fig. 2.2), and we are done.

4. THE PROOF OF THEOREM 1.1

In this section we consider 43 instances from Table 2.1 (addressed by their
identifiers). To prove the main theorem, we have to discard all instances but one
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(namely, (7)). For this purpose, instances are grouped according to some common
features. Some data relevant in proofs are displayed in separate tables. Besides
some ad hoc strategies (like in Proposition 4.1), the proofs are most frequently
based on the following two dominating strategies:

(a) to estimate Ê = p+ 2(e + h) by E in order to show that Ê ≥ E > F̂ , where
F̂ = 114 + 4a+ ν3;

(b) to deduce contradictions in the structure of graphs from S ′ (see Fig. 3.1)
based on tools developed in Section 3.

We first give some more details concerning strategy (a). Recall, quantities p,
e and h were estimated in Subsection 3.2 (provided H0 = C4). Here we add only
a few arguments for estimating parameters α, β (or α∗, β∗), and thus p. Recall,
p ≥ max{f(α, β), f∗(α∗, β∗)}, where α, β denote the number of red, blue edges
(RB-edges), while α∗, β∗ denote the number of yellow, green edges (YG-edges),
respectively.

If a is big, say a ≥ 7 (or even a ≥ 6) we can estimate α and β as follows:

(i) If a ≥ 7, consider the subgraph D (= D(4); seeSubsection3.1) of G, induced
by vertices of degree 4 (so it contains all red edges). Usually, it is a forest; if not,
then α ≥ 4 (or even 6 if q = 0). In the former case, let P (= Pk) be a “small
component” of D, say with k ≤ 3. Denote by pk the number of components in D

equal to Pk. Let v, and v′ if k > 1, be the vertices of P with smallest degree in D

(not G). Let S(v) = S5 be the star having v as its center. Consider a U -partition
in G with H0 = S(v). Then |U | ≥ a− 1 (by Lemma 3.2(3o) – with equality only if
s = 2). Next we have:

If k = 1 then P = P1 (so v is an isolated vertex in D). It is incident in G to
at least a − 5 (= (a − 1) − 4) blue edges. So we have found (a − 5)p1 blue edges.
Observe here (and forth) that each blue edge is counted only once (i.e. within its
end-vertex of degree 4).

If k = 2 then P = P2 (so vv′ is an isolated edge in D). If |U | = a− 1 then v′

is incident to 3 blue edges (since deg(u) ≥ 3 if u ∈ U). If |U | ≥ a then v is incident
to at least one blue edge (since |U | ≥ 7). By exchanging the roles of v and v′, we
encounter now at least 2 blue edges. So we have found 2p2 blue edges.

If k = 3 then P (= P3) (let w be the central vertex of P ). If |U | = a− 1 then
w is incident to just two blue edges (since deg(u) ≥ 3 if u ∈ U). If |U | ≥ a then v

is incident to at least one blue edge (since |U | ≥ 7). By exchanging the roles of v
and v′, we now encounter at least 2 blue edges. So we have found 2p3 blue edges.

Summarizing the above conclusions we obtain: if a ≥ 7 then

(8) β ≥ (a− 5)p1 + 2(p2 + p3).

(ii) If a ≥ 6 then β ≥ (a − 5)(ν4 − 2α) (since p1 ≥ ν4 − 2α). Since β ≤ 3ν3 we
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obtain: if a ≥ 6 then

(9) α ≥
(a− 5)ν4 − 3ν3

2(a− 5)
and β ≥ (a− 5)(ν4 − 2α).

(iii) In addition, if a ≥ 6, to estimate α and β, one can count RB-edges incident
to quadrangle(s). Then, since |U | ≥ a− 1 ≥ 5 for each quadrangle, at least a − 5
vertices on each quadrangle are of degree 4. So we can find on each quadrangle at
least two RB-edges (since a ≥ 6). Some further RB-edges can arise if |U | = a − 1
(then deg(u) ≥ 3 if u ∈ U), but more can arise for sure if |U | ≥ a.

On the other hand, to estimate α∗ and β∗ (if a ≤ 6) we put focus on vertices
of degree 2 in G− U. Any such vertex, say v, is either a non-jumper, or 1-jumper,
or 2-jumper. If v is a non-jumper, then it is an interior vertex of Smith, or reduced
Smith graphs, and so is incident to one or two Y G-edges, unless both neighbours
are of degree 4 in G. But then, since Hi �= S5 (by Lemma 3.14), they are both
jumpers, and possibly 2-jumpers. If v is a simple jumper, then it is a pendant
vertex in some of acyclic Hi’s. So it has only one neighbour in them. Then either
one YG-edge arises, or two hexagons. Finally, if v is a 2-jumper then either one
or two YG-edges arise, or none (if both neighbours are of degree 4 in G, but then
two RB-edges arise). More details will be given later, when more details on the
structure of G is known.

It is also worth mentioning that “RB-variant” is preferable if f(0, 1) > f(0, 0);
otherwise (if f(0, 1) = f(0, 0)) then “YG-variant” can be superior.

We now give a short overview of dominating tools for strategy (b), which
turns to be very helpful if a ∈ {4, 5}.

• |U | ≥ a+ 1− s, with equality if and only if s = 2 (Lemma 3.2);

• s∗ + ε = m− n− s(|U | − 1) (Lemma 3.3);

•
∑

u∈U

deg(u) = (s+ 1)|U |+ (s∗ + ε)− 2εc − εv (Lemma 3.3);

• η(G − U) ≥ n− 2a− |U | (Lemma 3.7);

• η(G − U) =
t∑

i=0

η(Hi) (see also Remark 2.5);

• σi/j(x) (= σi(x)/σj(x)) is a constant on U (Lemma 3.9);

(I) – Instances of Table 4.1. Given a graph
G ∈ S

′, let G∗ be the smallest (multi)-graph
homeomorphic to G (so G∗ has no vertices of
degree 2).

Proposition 4.1. There are no graphs G ∈
S ′ with parameters given in Table 4.1.

identifier a (ν4, ν3, ν2) q

2 3 (3, 2, 12) 9
3 3 (2, 2, 14) 11
4 3 (1, 2, 16) 13

Table 4.1.
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Sketch proof. Observe first that |G∗| = ν3 + ν4 ≤ 5, and that G∗ has no loops
(otherwise G is not 2-connected). So all possible graphs G∗ can be easily con-
structed (just by hand). To obtain any tentative graph G starting from G∗, we
need to insert in total ν2 vertices of degree 2 into edges of G

∗. Since G is simple
and bipartite of girth 4 (note q > 0), we first insert vertices that “destroy” cycles of
lengths less than 4. But further on it turns that each obtained graph has a smaller
number of quadrangles than required (see Table 4.1).

(II) – Instances of Table 4.2. Recall, �min ≥ a − 1. Here we resolve some very
simple cases.

identifier a (ν4, ν3, ν2) q E F̂

23 5 (1, 10, 12) 9 145 144
24 6 (1, 18, 4) 4 161 156
28 6 (4, 10, 10) 4 149 148
31 6 (5, 6, 14) 5 147 144
33 7 (4, 14, 8) 2 157 156
36 7 (5, 10, 12) 3 157 152
39 7 (6, 6, 16) 4 157 148

Table 4.2.

Proposition 4.2. There are no graphs G ∈ S
′ with parameters given in Table

4.2.

Proof. Let E = f(0, 1)+ 2q(a− 1). Then E > F̂ for all instances of Table 4.2, and

we are done.

(III) – Instances of Table 4.3. Let E =
f(α, β) (note q = 0 for all instances).

Proposition 4.3. There are no graphs

G ∈ S
′ with parameters as in Table 4.3.

identifier a (ν4, ν3, ν2) q F̂

35 7 (8, 6, 12) 0 148
41 8 (4, 18, 6) 0 164
43 8 (7, 10, 12) 0 156

Table 4.3.

Sketch proof. First, we are done if α ≥ 6 (then, for all instances, E = f(6, 0) > F̂ ).
So assume that D is a forest (since q = 0). Then, for a fixed α, we show (using (8))
that β is enough large to ensure that E > F̂ .

(35) If α = 5 then β ≥ 2; if α = 4 then β ≥ 5; if α = 3 then β ≥ 8; if α = 2 then
β ≥ 11; if α = 1 then β ≥ 13; if α = 0 then β ≥ 15. Therefore, E ≥ min{f(α, β)} =
149 > F̂ = 148.

(41) If α ≥ 3 then E = 165; if α = 2 then β ≥ 4; if α = 1 then β ≥ 8; if α = 0 then
β ≥ 9. Therefore, E ≥ min{f(α, β)} = 165 > F̂ = 164.

(43) If α ≥ 5 then E = 159; if α = 4 then β ≥ 1; if α = 3 then β ≥ 4; if
α = 2 then β ≥ 7; if α = 1 then β ≥ 10; if α = 0 then β ≥ 13. Therefore,
E ≥ min{f(α, β)} = 157 > F̂ = 156. �

In what follows q > 0. We assume that Q1, Q2, . . . , Qq are the quadrangles
of a tentative graph G, and that �(Q1) ≤ �(Q2) ≤ · · · ≤ �(Qq). Moreover, since
H0 = C4 if not told otherwise, then H0 = Q1, or just Q for short.
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(IV) – Instances of Table 4.4. Let E = f(α, β) + 2q�min, where �min = �(Q).

identifier a (ν4, ν3, ν2) q f(0, 1) F̂

25 6 (3, 14, 6) 3 121 152
29 6 (6, 6, 12) 3 109 144
32 6 (7, 2, 16) 4 97 140
34 7 (6, 10, 10) 1 136 152
37 7 (7, 6, 14) 2 121 148
38 7 (9, 2, 16) 1 124 144
40 7 (8, 2, 18) 3 109 144
42 8 (5, 14, 10) 1 145 160

Table 4.4.

Proposition 4.4. There are no graphs G ∈ S ′ with parameters given in Table

4.4.

Proof Recall �min ≥ a− 1 (with equality if s = 2). So we have:

(25) Let �min = 5. Then s = 2, and deg(u) ≥ 3 if u ∈ U. So if v is a vertex of Q of
degree 4 it is incident either to at least one red edge (then α ≥ 1), or to at least three
blue edges (then β ≥ 3). So E = min{f(1, 0), f(0, 3)}+ 2q�min = 153 > F̂ = 152.
If �min ≥ 6 then E = f(0, 1) + 2q�min = 157 > F̂ = 152.

(29) Let �min = 5. If α ≥ 3, then E ≥ f(3, 0) + 2q�min = 147 > F̂ = 144. Next,
using we obtain: if α = 2 then β ≥ 2; if α = 1 then β ≥ 4; if α = 0 then β ≥ 6
(while β ≥ 7 is required). So, in the latter case, let β = 6. Then each vertex of D
is incident to just one blue edge (note one blue edge is guaranteed by reasoning as
in Proposition 4.3, taking that H ′

0 = S5). On the other hand, each vertex of Q of
degree 4 is incident to at least two blue edges, a contradiction (note, each vertex
in U is of degree at least 3). So E = min{f(α, β)} + 2q�min = 145 > F̂ = 144. If
�min ≥ 6 then E = f(0, 1) + 2q�min ≥ 145 > F̂ = 144.

(32) Let �min = 5. Then α ≥ 1 (by (9)). If α ≥ 2 then E ≥ f(2, 0) + 2q�min =
143 > F̂ = 140; if α = 1 then β ≥ 3 (by (9)), and we are done (since f(1, 3) = 103).
If �min ≥ 6 then E = f(0, 1) + 2q�min ≥ 145 > F̂ = 140.

(34) Let �min = 6. Then s = 2, and deg(u) ≥ 3 if u ∈ U. Counting RB-edges
around Q we obtain α + β ≥ 7. So either α ≥ 3 (then f(3, 0) ≥ 141), or (by (9))
we have: if α = 2 then β ≥ 5; if α = 1 then β ≥ 6. In addition, if α = 0 then β ≥ 9
(since each vertex of degree 4 now has two neighbours of degree 3). Consequently,
E = min{f(α, β)} + 2q�min = 153 > F̂ = 152. If �min ≥ 7, then α + β ≥ 4 (with
α ≥ 2). So E = min{f(α, β)} + 2q�min ≥ 154 > F̂ = 152.

(37) Let �min = 6. Then, as above, either α ≥ 2, or α = 1 and β ≥ 2, or β ≥ 5.
But then E = min{f(α, β)} + 2q�min = 149 > F̂ = 148. If �min ≥ 7 then E =
f(0, 1) + 2q�min ≥ 149 > F̂ = 148.

(38) Now �min ≥ 6. First, if α ≥ 5, then E = f(α, 0) + 2q�min ≥ 147 > F̂ = 144.
From (9) we obtain that α ≥ 3, and next we have: if α = 4 then β ≥ 1; if α = 3
then β ≥ 3. So E = min{f(α, β)}+ 2q�min ≥ 145 > F̂ = 144.
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(40) Now �min ≥ 6. Then α ≥ 3 (by (9)), and E = f(3, 0)+2q�min ≥ 151 > F̂ = 144.

(42) Now �min ≥ 7. Now all vertices in Q, but possibly one, are of degree 4. So
either all edges of Q are red (then α ≥ 4), or two are red while other two are blue
(so α, β ≥ 2). Then E = min{f(α, β)}+ 2q�min ≥ 166 > F̂ = 160.

(V) – Instances of Table 4.5. We now consider instances with more structural
considerations involved.

identifier a n m (ν4, ν3, ν2) q f(0, 1) F̂

1 3 17 21 (1, 6, 10) 10 49 132
5 4 17 25 (1, 14, 2) 5 97 144
30 6 24 33 (8, 2, 14) 2 112 140

Table 4.5.

Proposition 4.5. There are no graphs G ∈ S ′ with parameters given in Table

4.5.

Sketch proof. Recall �min ≥ a− 1 (with equality if s = 2). So we have:

(1) Let �min = 2. Then s = 2 and deg(u) ≥ 3 if u ∈ U. So s∗ = 0 (otherwise ν4 > 1)
and consequently η(G− U) ≤ 8. On the other hand η(G− U) ≥ 9.

Let �min = 3. Then s ≥ 1. If s = 1 then s∗+ε = 2. So s∗ ≤ 2, and consequently
η(G−U) ≤ 8, while η(G−U) ≥ 8. So η(G−U) = 8, and then H1 = S5, H

∗
1
= S4 and

H∗
2 = P1. But then εv ≥ 1 (otherwise, due to H1, δ(G) < 2). So s∗+ε ≥ s∗+εv ≥ 3,

a contradiction. If s = 2 then s∗ + ε = 0, while εv > 0 (as above).

Let �min ≥ 4. If K2,3 �⊂ G, there are at most 6 (or 3, or 1) quadrangles passing
through each vertex of degree 4 (resp. 3 and 2). But then q ≤ (6ν4+3ν3+ ν2)/4 <
10. Otherwise, if K2,3 ⊂ G, then E = f(0, 1)+2(q�min+κ) ≥ 135 > F̂ = 132 (since
κ ≥ 3).

(5) Let �min = 3. Then s = 2, and therefore deg(u) ≥ 3 if u ∈ U. Next s∗ = εu = 0,
εv ≤ 1 (otherwise ν4 > 1) and εc ≤ 2. So s∗ + ε ≤ 3, a contradiction (since
s∗ + ε = 4).

Let �min = 4. Then s ≥ 1. Next |H1| ≥ 6 (by Lemmas 3.12 and 3.13), and
therefore s = 1 (otherwise |H2| < 4). So s∗ + ε = 5, whence εv ≤ 5. But then
∑

u∈U

deg(u) = 18 − 2εc − εv ≤ 13 (note ν4 = 1). So 2εc + εv ≥ 5. Since εc ≤ 1 we

obtain: if εc = 0 then εv = 5; if εc = 1 then εv ≥ 3. In the former case s∗ = 0, while
in the latter case s∗ = 1 (note |R∗| is odd). But in both cases deg(u) = 4 for some
u ∈ U. So min(U) = 2 (otherwise there exists a vertex of degree 4 in H0). If s

∗ = 0
then H1 = W9, or E9, and if s∗ = 1 then H1 = C6, or C8. Then η(G − U) ≥ 5.
So H1 �= E9, C6. If H1 = W9 then ν4 > 1 (one interior vertex in W9 is of degree
4 in G). Finally, if H1 = C8, then either ν4 > 1, of all vertices in C8 but one are
simple jumpers, and therefore (observing also H∗

1
(= P1)) h ≥ 8, a contradiction

(by Lemma 3.11).

Let �min ≥ 5. Then E = f(0, 1) + 2q�min ≥ 147 > F̂ = 144.
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(30) Let �min = 5. Then then s = 2 and deg(u) ≥ 3 if u ∈ U. In addition, s∗+ ε = 1
(so εv ≤ 1). Since ν3 = 2 at least three vertices in U are of degree 4. Therefore, if
s∗ = 0 then εv ≥ 3. Otherwise, if s∗ = 1 then εv ≥ 1.

If �min ≥ 6 then α ≥ 1 and β ≥ 6 (see (9)). So E = f(α, β) + 2q�min ≥ 143 >
F̂ = 140.

(VI) – Instances of Table 4.6. The remaining instances with a ≥ 6.

identifier a n m (ν4, ν3, ν2) q f(0, 1) F̂

26 6 23 33 (5, 10, 8) 2 124 148
27 6 23 33 (7, 6, 10) 1 128 144

Table 4.6.

Proposition 4.6. There are no graphs G ∈ S ′ with parameters given in Table

4.6.

Sketch proof. Since �min ≥ a− 1 (with equality if s = 2) we have:

(26) Let �min = 5. Now, if α = 0, then β ≥ ν4 = 5 (since each vertex of degree 4
is incident to at least one blue edge). So E = min{f(1, 0), f(0, 5)}+ 2q�min = 145,
and we are done if, say h ≥ 2. To see this, observe first that s = 2, and min(U) > 0
(since �min > 4). So all vertices in H1 and H2, belonging to one of the colour classes,
are jumpers (by Lemma 3.4(3o)). If so we can find in Hi an edge ei (i = 1, 2) so
that h(ei) ≥ 1 – note, at least one vertex in Hi in opposite colour is a jumper (since
min(U) > 0). So h ≥ 2.

Let �min ≥ 6. Then, β ≥ 5 if α = 0, and E ≥ min{f(1, 0), f(0, 5)} + 2q� ≥
149 > F̂ = 148.

(27) Let �min = 5. Now, if α = 0, then β ≥ ν4+2 = 9 (now, in contrast to situation
from above, the additional blue edges are are found on the (unique) quadrangle).
So E = min{f(1, 0), f(0, 9)} + 2q�min = 139, and we are now done, if say h ≥ 3.
Reasoning as above, we again have that h ≥ 2. To prove that h ≥ 3, observe
first that H1 �= C4 (since q = 1), and also that H1 �= S5 (by Lemma 3.14). So
H1 ∈ {C6,W6,W7, E7}. But then h(H0/1) ≥ 2, as required. Indeed, if there exists
a 2-jumper in H1 then latter follows at once (since q = 1); otherwise, we can find
in H1 an additional edge in the role of e1.

Let �min = 6. Then s ≥ 1. As above, s �= 2. So let s = 1 (then s∗ + ε = 5).
As before, β ≥ 9 if α = 0, whence E = min{f(1, 0), f(0, 9)}+ 2q�min = 141. So we
are done if, say h ≥ 2. The latter is true if there are 2-jumpers in R∗. Otherwise,
due to simple jumpers, h ≥ 2 if |H1| ≤ 7 (then h ≥ ||H1|| −Δ(H1); note the edges
incident to a non-jumper, if any, do not give rise to hexagons). So |H1| ≥ 8. Also
|H1| �= 13. Otherwise, only εv �= 0 (note, εu = 0 since q = 1), whence εv = 5. But
then h ≥ 2 (since h ≥ ||H1|| − 2Δ(H1) – note, there are 11 (= |U |+ εv) cross edges
between U and H1). So s∗ ≥ 1, and |H∗

1 | ≤ 5 (since |R∗| = 13). If H∗
1 = Pi (i ≤ 5),

then either h ≥ 2, or h ≥ 1 and α∗ ≥ 1 (then f∗(1, 0) ≥ 131), or α∗ ≥ 2 (then
f∗(2, 0) ≥ 134), and we are done. If H∗

1
= Y4 (or Y5) then h ≥ 2 (then s∗ = 1, and

therefore all vertices either in H1, or in H∗
1 are jumpers).



More on ... integral graphs with maximum degree 4 not having ±1 as eigenvalues 149

Let �min ≥ 7. Then either α ≥ 3, or α = 2 and β ≥ 6 (note, if �min = 7
then one vertex in H0 of degree 4 is incident to at least two red edges, while other
vertices of degree 4 are incident to a blue edge). So E = min{f(α, β)}+2ql−min ≥
146 > F̂ = 144.

(VII) – Instances of Table 4.7. Cases with a = 5 and n = 20.

identifier a n m (ν4, ν3, ν2) q f(0, 1) F̂

14 5 20 29 (2, 14, 4) 4 109 148
15 5 20 29 (4, 10, 6) 3 112 144

Table 4.7.

Proposition 4.7. There are no graphs G ∈ S ′ with parameters given in Table

4.7.

Sketch proof. Now �min ≥ a− 1 = 4 (with equality if l = 4). Next we have:

Let �min = 4. Then s = 2, and |H1| + |H2| ≤ 12. So H1 = C6 (by Lemmas
3.13 – 3.15), and also H2 = C6. But then η(G − U) ≤ 2, a contradiction (since
η(G− U) ≥ 6). So l �= 4 and we have:

(14) Let �min ≥ 5. Then E = f(0, 1) + 2q�min ≥ 149 > F̂ = 148.

(15) Let �min = 5. Then E = f(0, 1) + 2q�min = 142. So we are done if one of
the following holds: h ≥ 2, or α∗ ≥ 1 (then f∗(1, 0) = 115), or β∗ ≥ 3 (then
f∗(0, 3) = 115), or h = 1 and β∗ ≥ 1 (then f∗(0, 1) = 113). So H1 �= C4 (then
h ≥ 4), and H1 �= S5 (by Lemma 3.14). If H1 = C2k (k ≥ 3) then each non-jumper
in H1 is adjacent to jumpers in H1 (otherwise α

∗ ≥ 1). Next, at least one of these
jumpers is adjacent to an additional non-jumper (otherwise h ≥ 2). Proceeding in
this way, we obtain that all vertices in H1 belonging to one colour class are non-
jumpers, while the others are jumpers, a contradiction (since �min > 4). Observe
now that there are at most two 2-jumpers in R∗, neither of them being a 3-jumper
(otherwise, κ ≥ 3 or h ≥ 2 – see Subsection 3.2(H(b))). Observe also that σ0(x) = 1
(otherwise, κ ≥ 3). Let H1 = Wk (k ≥ 6). Then both vertices of degree 3 (in Wk)
are non-jumpers (otherwise h ≥ 2). If k = 6 let σ1(x) = y. Clearly, y ≤ 2. So we
have: if y = 1 then β∗ ≥ 3; if y = 2 then κ ≥ 3. If k = 7 then h ≥ 2. If k ≥ 8 then
β ≥ 2 (two green edges are incident to vertices of degree 3 in Wk because number
of 2 jumpers in Wk is at most 2). Next, since there are no more green edges in
Wk, all other vertices in the interior path must be simple jumpers, whence either
β∗ ≥ 3, or h ≥ 1 in addition to β∗ ≥ 1). So let H1 = Ek. If k = 7 then h ≥ 1
and β∗ ≥ 1. If k ≥ 8 consider H∗

i ’s. It easily follows that s∗ = 1 if k = 8 (then
H∗

1 = P3), and s∗ = 2 if k = 9 (then H∗
1 = H∗

2 = P1). So there are no 2-jumpers
in H1, and we easily obtain that either α

∗ ≥ 1, or h ≥ 1 and β∗ ≥ 1.

Let �min ≥ 6. Then E = f(0, 1) + 2q�min ≥ 148 > F̂ = 144.

(VIII) – Instances of Table 4.8. Cases with a = 5 and n = 21.
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identifier a n m (ν4, ν3, ν2) q f(0, 1) F̂

16 5 21 29 (1, 14, 6) 6 97 148
17 5 21 29 (3, 10, 8) 5 97 144
18 5 21 29 (5, 6, 10) 4 97 140
19 5 21 29 (7, 2, 12) 3 100 136

Table 4.8.

Proposition 4.8. There are no graphs G ∈ S ′ with parameters given in Table

4.8.

Sketch proof. Now �min ≥ a− 1 = 4 (with equality if s = 2). Let �min = 4. Then
|H1| ≤ 6, whence H1 = C6 (see Lemmas 3.13 – 3.15). But then η(G − U) ≤ 5 is
too small (since η(GU ) ≥ 7). Next we have:

(16) Let �min ≥ 5. Then E = f(0, 1) + 2q�min ≥ 157 > F̂ = 148.

(17) Let �min ≥ 5. Then E = f(0, 1) + 2q�min ≥ 147 > F̂ = 144.

(18) Let �min ≥ 5. If �min = 5 then E = f(0, 1) + 2q�min + 2(κ + h) ≥ 137, and
we are done if κ + h ≥ 2. So there are at most two quadrangles sharing just one
common edge, and then α + β ≥ 6 (since each quadrangle contains at least two
RB-edges). But then E = min{f(α, β)} + 2q�min ≥ 142 > F̂ = 140. If �min ≥ 6
then E = f(0, 1) + 2q�min ≥ 142 > F̂ = 140.

(19) Let �min ≥ 5. If �min = 5 then K2,3 �⊂ G. Otherwise, κ ≥ 3 and α ≥ 1 (since

ν3 = 2). But then E = f(1, 0)+2(ql+κ)+h = 137 > F̂ = 136, and we are done. So
we have two patterns for H0 +U, and in both of them one vertex in H0 (say white
one) is of degree 2. If so all vertices in R∗ of in opposite colour (so black ones) are
jumpers (by Lemma 3.4(3o)). Let H1 = C2k (k ≥ 2). If k = 2 then h ≥ 4 and we
are also done. If k ≥ 3 we are also done. Indeed, from the above, σ0(x) ≡ 1. Also,
σ0/1(x) ≡ 1, and therefore σ1(x) ≡ 1. So just five cross edges join U with H1, and
then either ν3 > 2, or some black vertices are not jumpers (note, at most one vertex
in R∗ is of degree 3, since one vertex of degree 3 is already in H0). Let H1 �= Wk

(with k ≥ 6). Now at least one vertex of degree 3 inWk must be a jumper, so h ≥ 2.
The other must be a non-jumper but its neighbours which are pendant vertices in
Wk must be jumpers, but not 2-jumpers (otherwise, either ν3 > 2, or h ≥ 4). So
β∗ ≥ 2, and then E = f∗(0, 2) + 2(q�min + h) = 137 > F̂ = 136. If H1 = Ek, then
s = 1 (note, if s = 2 then n > 21). So s∗ + ε = 4. Let σ1(x) ≡ y. Let k = 7.
Then: y �= 1 (since σ1(u) > 1 for some u ∈ U); y �= 2 (then ν3 > 2); y �= 3 (then
|{u : σ1(u) = 3}| = 1); y �≥ 4 (then εv ≥ 5). Let k = 8. Then: y > 2 (otherwise, by
Lemma 3.4(4o), two non-jumpers in H1 are in opposite colours, a contradiction);
y �= 3 (then either ν3 > 2, or two non-jumpers in H1 are in opposite colours);
y �≥ 4 (then s∗ + εv ≥ 5). Let k = 9: Then s∗ = 3 (otherwise, η(G − U) < 6, a
contradiction (since η(G − U) ≥ 6)). So εv ≤ 1. Next we have: y > 3 (otherwise,
two non-jumpers in H1 are in opposite colours); y �≥ 4 (otherwise, εv ≥ 2).

Let �min ≥ 6. Then α ≥ 1, and therefore E = f(1, 0) + 2q�min ≥ 137 > F̂ =
136.

(IX) – Instances of Table 4.9. Cases with a = 5 and n = 22.
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identifier a n m (ν4, ν3, ν2) q f(0, 1) F̂

20 5 22 29 (2, 10, 10) 7 85 144
21 5 22 29 (4, 6, 12) 6 85 140
22 5 22 29 (6, 2, 14) 5 85 136

Table 4.9.

Proposition 4.9. There are no graphs G ∈ S ′ with parameters given in Table

4.9.

Sketch proof. Now �min ≥ a − 1 = 4 (with equality only if s = 2). If �min = 4
then s = 2, and s∗ + ε = 1. Since |H1| + |H2| ≤ 14, |H1| ≤ 7. On the other hand,
if |H1| ≤ 6 then H1 = C6 (by Lemmas 3.13 – 3.15. But then η(G − U) ≤ 7, a
contradiction (since η(G − U) ≥ 8). So |H1| = 7. If H1 = E7 then η(G − U) ≤ 6
(again too small). So let H1 = H2 = W7. But then εv ≥ 2 (by Lemma 3.4(1o)). So
�min �= 4, and we have:
(20) If �min ≥ 5 then E = f(0, 1) + 2q�min ≥ 155 > F̂ = 144.
(21) If �min ≥ 5 then E = f(0, 1) + 2q�min ≥ 144 > F̂ = 140.
(22) If �min ≥ 5 then β ≥ 2 (it easily follows), and E = f(0, 2) + 2q�min ≥ 137 >

F̂ = 136.

(X) – Instances of Table 4.10. Cases with a = 4 and n = 20.

identifier a n m (ν4, ν3, ν2) q f(0, 1) F̂

12 4 20 25 (2, 6, 12) 9 61 136
13 4 20 25 (4, 2, 14) 8 65 132

Table 4.10.

Proposition 4.10. There are no graphs G ∈ S
′ with parameters given in Table

4.10.

Sketch proof. Now �min ≥ a − 1 = 3 (with equality only if s = 2). If �min = 3,
then s = 2, and s∗ + ε = 1. If s∗ = 0 then η(G − U) ≤ 8, a contradiction (since
η(G−U) ≥ 9). If s∗ = 1 then |H1|+ |H2| ≤ 12, and therefore |H1| ≤ 6. So H1 = W6

(note, H1 is a tree since εc = 0; also H1 �= S5 by Lemma 3.14). But then δ(G) < 2
(since εv = 0). So �min �= 3.

If �min = 4 then s ≥ 1, and η(G− U) ≥ 8. If s = 1 then s∗ + ε = 2. If s∗ = 2
then εv = 0, and H∗

1 and H∗
2 are paths. So η(G − U) ≤ 7 (too small). The same

holds if s∗ ≤ 1. If s = 2 then s∗ + ε < 0. So �min �= 4, and we have:
(12) If �min ≥ 5 then E = f(0, 1) + 2q�min ≥ 151 > F̂ = 136.
(13) If �min ≥ 5 then E = f(0, 1) + 2q�min ≥ 145 > F̂ = 132.

(XI) – Instances of Table 4.11. Cases with a = 4 and n = 19.

identifier a n m (ν4, ν3, ν2) q f(0, 1) F̂

9 4 19 25 (1, 10, 8) 8 73 140
10 4 19 25 (3, 6, 10) 7 73 136
11 4 19 25 (5, 2, 12) 6 73 132

Table 4.11.
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Proposition 4.11. There are no graphs G ∈ S ′ with parameters given in Table

4.11.

Sketch proof. Now �min ≥ a−1 = 3 (with equality only if s = 2). If �min = 3 then
s = 2, and deg(u) ≥ 3 for u ∈ U. Next s∗ + ε = 2 and η(G − U) ≥ 8 (by Lemmas
3.3(1o) and 3.7). So s∗ ≤ 1 (otherwise Δ(G) > 4). If s∗ = 0 then η(G − U) ≤ 8,
with equality only if (H1, H2) = (S5,W7). But then min(U) = 0 and εv = 2. So
ν4 = 4, a contradiction (for all instances). If s∗ = 1 then |H1| + |H2| ≤ 11. So
|H1| ≤ 5, and H1 = C4 or S5. But then either εc + εv = 1, and H2 must be a tree
with 3 pendant vertices (otherwise ε ≥ 2). So H2 = E7, while H1 = C4. But then
η(G− U) ≤ 6. So �min �= 3.

If �min = 4 then s ≥ 1. But then H1 cannot be any of possible Smith graphs
up to 11 vertices (by Lemmas 3.13–3.18). So �min �= 4, and we have:

(9) If �min ≥ 5 then E = f(0, 1) + 2q�min ≥ 153 > F̂ = 140.

(10) If �min ≥ 5 then E = f(0, 1) + 2q�min ≥ 143 > F̂ = 136.

(11) If �min ≥ 5 then E = f(0, 1) + 2q�min ≥ 133 > F̂ = 132.

(XII) – Instances of Table 4.12. Cases with a = 4 and n = 18. Now we
encounter graphs that satisfy the most of our constraints so that the integrality
of the spectrum has to be checked. To avoid a rather involved case study, we will
occasionally replace it by some (local) computer search which is manageable even
by hand with newGRAPH.

identifier a n m (ν4, ν3, ν2) q f(0, 1) F̂

6 4 18 25 (2, 10, 6) 6 85 140
7 4 18 25 (4, 6, 8) 5 85 136
8 4 18 25 (6, 2, 10) 4 88 132

Table 4.12.

Proposition 4.12. There is only one graph G ∈ S
′ with parameters given in

Table 4.12 (see the third graph of Fig. 1.1 – it arises from instance (7)).

Sketch proof. Now �min ≥ a − 1 = 3 (with equality only if s = 2). If �min = 3
then s = 2, and s∗ ≤ 1 (otherwise Δ(G) > 4). Since |H1| + |H2| ≤ 11, it follows
that H1 = C4 (recall H1 �= S5). If s∗ = 0 then H2 = W7. Note, H2 �= E7

(otherwise, η(G − U) ≤ 5, while η(G − U) ≥ 7). If (H1, H2) = (C4,W7) then
G − U = C4 ∪ C4 ∪W7. So, to obtain G, we need to add three vertices to G − U

(i.e. those which comprise U). This can be easily done (say by using newGRAPH).
It turns that none of the resulting graphs G, except just one arising from (7), is
integral. Otherwise, if s∗ = 1 then |H2| = 4, or 6. So (H1, H2, H

∗
1
) = (C4, C4, P3), or

(C4,W6, P1). Now, once again (since |U | = 3), we can easily construct all tentative
graphs G, and verify that none of them is integral.

If �min = 4 then s ≥ 1. But then H1 cannot be any of possible Smith graphs
up to 10 vertices (by Lemmas 3.13–3.18). So �min �= 4, and we have:

(6) Let �min ≥ 5. Then E = f(0, 1) + 2q�min ≥ 145 > F̂ = 140.
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(7) Let �min ≥ 5. Then either α ≥ 1, or β ≥ 3 (note, if α = 0 then each quadrangle
contains just two blue edges). So E = min{f(1, 0), f(0, 3)}+ 2q�min ≥ 137 > F̂ =
136.

(8) Let �min ≥ 5. Now E = f(0, 1) + 2q�min ≥ 128. So we are done if κ + h ≥ 3.
This happens if K2,3 ⊂ G (then κ ≥ 3), or if A7, B8 ⊂ G (then h ≥ 3). Otherwise,
observe that each quadrangle has at least two RB-edges, and just one vertex of
degree 3 (note ν3 = 2). So, in view of the forbidden configurations, there exist two
pairs of quadrangles with one common vertex of degree 3, and also one common
edge. If so, α+β ≥ 6 and h ≥ 2, and then E = min{f(1, 0), f(0, 5)}+2q�min+2h ≥
133 > F̂ = 132.

Concluding remarks. Collecting the results of Propositions 4.1 – 4.12 we arrive at
the proof of Theorem 1.1. At this place some further facts deserve to be mentioned.
Namely, in this paper we have not only reproduced a part of the results of computer
search carried on in [7], but also have shown why these types of problem are indeed
too hard. Next, we hope that the methods (or, according to referee “the tricks
and lemmas”) developed in this paper can be used for studying the other classes of
integral graphs.
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Poland

E-mails: balinska@man.poznan.pl

zwierzak@man.poznan.pl

Mathematical Institute SANU,

Knez Mihailova 36,

11 000 Belgrade

Serbia

E-mail: sksimic@mi.sanu.ac.rs


