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FORBIDDEN SETS OF PLANAR RATIONAL SYSTEMS

OF DIFFERENCE EQUATIONS WITH

COMMON DENOMINATOR

Ignacio Bajo

The forbidden sets of systems of first order rational difference equations in

the plane in which the denominators are common for all the components

of the system is studied. Such forbidden sets are composed of lines which,

depending of some spectral properties of an associated matrix, can either be

a finite number or lines or an infinity of lines converging to either an invariant

line or to a finite number of lines itersecting in a fixed point or else it can be

dense in a large subset of R2.

1. INTRODUCTION

Rational systems of difference equations have recently attracted a huge inter-
est not only due to their apparent tractability in comparison with other non-linear
equations but to the fact that they commonly appear in applications [6, 9, 10, 11].
In [7], the authors give some results on the behaviour of the solutions and provide
some open questions for systems of equations defined by linear fractionals:

xn+1 =
α1xn + β1yn + γ1

A1xn +B1yn + C1

yn+1 =
α2xn + β2yn + γ2

A2xn +B2yn + C2

⎫⎪⎪⎬
⎪⎪⎭ , n = 0, 1, . . .
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where the parameters are considered non-negative. Such restriction on the coeffi-
cients ensures that the orbits starting with a positive initial condition are complete
and, therefore, there always exists an open subset of R2 in which all the corre-
sponding orbits are well defined. However, in many interesting cases coefficients
may vary in sign or the initial conditions have to be taken negative. In those cases,
the existence of full orbits is not obviously guaranteed and a so called forbidden set

or bad set of points whose orbit is uncomplete appears. Obviously, the knowledge
of such forbidden set is necessary to define the maximal open set of points in which
the corresponding discrete dynamical system can be defined (if any). Nevertheless,
the complete description of those forbidden sets in the general case is a complicated
problem and, whenever it can be done, the techniques used for their determination
should be adapted to the particularities of the equations [13, 14].

Linear fractionals in one variable give rise to the well known Riccati equations
[1, 12], which arise from iteration of a Möbius transformation. Some higher order
rational difference equations can be studied with the aid of such Riccati ones; for
instance, the second order rational equation

xn+1 =
xn−1

a+ bxn−1xn

, n ≥ 1

studied in [5, 15] can be transformed in the system of equations

un+1 =
un

a+ bun

xn+1 =
un+1

xn

⎫⎪⎬
⎪⎭

which is obviously composed of an autonomous Riccati equation and a non-au-
tonomous one. Further examples of higher order systems of rational difference
equations which are solvable and are, in certain way, related to the second order
equation above or to the Riccati equation can be found in [14, 16] and references
cited therein.

A higher dimensional generalization to Riccati equations may be done by con-
sidering systems of linear fractionals sharing denominator. Those special rational
systems have been studied in [4] to obtain a large family of non-trivial examples
of globally periodic dynamical systems. Certain biological applications of rational
systems sharing denominator can be found in [2] where the authors study a par-
ticular case which yields a simple Leslie/Gower model for competition of biological
species in a limited resource proving that competitive exclusion occurs and propos-
ing stocking strategies to ensure the persistence of weaker species. The dynamics
in the planar case has been partially studied in [3], while the work is focused in
the long-time behaviour of complete solutions. The aim of this paper is to give a
description of the forbidden set for all rational systems with common denominator
in the plane.

A key fact in the study of this kind of rational systems is that they can some-
how be expressed as a certain projection of a linear system and, as a consequence,
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can be described in terms of certain square matrices. As it can be seen in the
references cited above, the spectral properties of such matrices are substantial to
describe the dynamics of the system. For example, fixed points of the system are
related to certain eigenvalues of the associated matrix. However, usual matrix sim-
ilarity does not, in general, preserve the dynamics of the system and, in particular,
the corresponding forbidden sets can differ a lot between two of our rational systems
with similar associated matrices. We will see however that affine transformations
of the plane do preserve the dynamics and this will let us give a full description of
the forbidden set in all the cases.

The paper is divided in three sections besides the introduction. The first
section contains, mainly, the basic notions and the preliminary statement of the
problem. As we see throughout the paper, in many cases the forbidden set accu-
mulates on an invariant line and, thus, we begin Section 2 with a characterization of
invariant lines for our rational systems. We also study in such section the reducibil-
ity to some simpler cases by means of affine changes of variables and we start the
description of the forbidden sets in some cases where, under such a change of vari-
ables, the problem reduces to the characterization of the forbidden set of a scalar
Riccati equation. Finally, in the last section we also use affine transformations to
reduce the remaining cases to some canonical ones. It should be noticed that since
the forbidden sets are composed of lines, affine transformations do not modify the
general properties (as, for example, parallelism) of the set components.

The main results of the paper can be summarized, roughly speaking, as fol-
lows: In the cases in which the associated matrix has only real eigenvalues, the
forbidden set is either a single line or an infinity of lines which converge pointwise
to certain invariant line. When there exist complex eigenvalues and the forbidden
set is composed of infinite lines, the lines can either converge to a single invariant
line or converge to a finite number of lines or else are dense either in the whole
plane or in the exterior of a parabola.

2. PRELIMINARIES

We consider planar systems of rational difference equations in which the de-
nominators of both equations are equal. Thus, we deal with systems of the form

(1)

xn+1 =
α1xn + β1yn + γ1

αxn + βyn + γ

yn+1 =
α2xn + β2yn + γ2

αxn + βyn + γ

⎫⎪⎪⎬
⎪⎪⎭ , n = 0, 1, . . .

where the greek parameters represent fixed real numbers and α, β and γ do not
vanish simultaneously. Since the case in which α = β = 0 corresponds to a linear
system of equations, we always actually suppose that (α, β) �= (0, 0).

As it was shown in the general higher dimensional case in [4], if one denotes
by q the mapping given by q(a1, a2, a3) = (a1/a3, a2/a3) for (a1, a2, a3) ∈ R

3 with
a3 �= 0 and � : R

2 → R
3 is given by �(a1, a2) = (a1, a2, 1)

t, where M t stands
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for the transposed of a matrix M , then the system can be written in the form
(xn+1, yn+1) = q ◦A ◦ �(xn, yn) for the square matrix

(2) A =

⎛
⎝ α1 β1 γ1

α2 β2 γ2
α β γ

⎞
⎠ .

When the matrix A is singular and (α, β) �= (0, 0) it can be easily seen
that there exists C1, C2 ∈ R such that, up to a permutation of the variables,
xn+1 = C1yn+1 + C2 holds for all n ≥ 1. This means that our system can be
reduced to a single Riccati equation in one of the variables and a direct substitution
to obtain the other one. Therefore, in order to avoid this case, we consider that A
is invertible.

Since we frequently use the maps q and �, we recall the following from [4]:

Lemma 1. Let q and � be defined as above. One has :

(a) q
(
�(a1, a2)

)
= (a1, a2) for all (a1, a2) ∈ R

2.

(b) �
(
q(a1, a2, a3)

)
= (1/a3)(a1, a2, a3) for all (a1, a2, a3) ∈ R

3 with a3 �= 0.

(c) If a3 �= 0 �= b3, then q(a1, a2, a3) = q(b1, b2, b3) is equivalent to (a1, a2, a3) =
λ(b1, b2, b3) for some λ �= 0.

(d) If A is an 3 × 3 matrix, then q(A�(q(v))) = q(Av) for all v ∈ R
3 such that

q(v) and q(Av) exist.

The description of our rational system by means of the matrix A let us com-
pletely determine its solutions in terms of the powers of A. Actually, the explicit
solution to the system with initial condition (x0, y0) is given by

(3) (xn+1, yn+1) = q ◦An(x0, y0, 1)
t.

Therefore, our system can be completely solved and the solution starting at (x0, y0)
is just the projection by q of the solution of the linear system vn+1 = Avn with
initial condition v0 = (x0, y0, 1)

t whenever such projection exists. If this is not the
case, then the orbit starting at (x0, y0) is not complete and we say that (x0, y0) lies
in the forbidden set. Explicitly, we have

Definition 2. The forbidden set of the system (1) is given by the union of lines:

(4) F =
⋃
n≥1

{
(x, y) ∈ R

2 : (0, 0, 1)An(x, y, 1)t = 0
}
,

We call the first of those lines principal forbidden line; namely,

PF =
{
(x, y) ∈ R

2 : (0, 0, 1)A(x, y, 1)t = 0
}
=

{
(x, y) ∈ R

2 : αx+ βy + γ = 0
}

.
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Remark 3. In [4] we studied global periodicity of n-dimensional rational systems of equa-
tions sharing denominator. They can be described similarly by a n× n matrix A and one
sees that global periodicity of the system is equivalent to Ak = λI for some k ∈ N. This
implies that the forbidden set of such systems is obviously composed of a finite number
of hyperplanes. Note that, in particular, when the map is globally 2-periodic then the
forbidden set reduces to the first forbidden hyperplane.

3. INVARIANT LINES, AFFINE TRANSFORMATIONS AND THE
CASES REDUCIBLE TO SCALAR EQUATIONS

From now on, we denote by pr : R3 → R the projection on the third compo-
nent pr(x, y, z) = z and by U0 the subspace of vectors in R

3 with vanishing third
component U0 = pr−1({0}). It is obvious that U0 is an A-invariant subspace if and
only if (α, β) = (0, 0). Since this case was excluded because it corresponds to a
linear system of equations, we can always assume that U0 is not stable by A.

Remark 4. It has been proved in [4] that a point (a, b) ∈ R
2 is an equilibrium of the

rational system if and only if (a, b, 1) is an eigenvector of the associated matrix A for a
non null eigenvalue. This obviously suggests a relation for a regular matrix A between
certain A-invariant subspaces of R3 and geometrical objects which are invariant under the
rational system. In fact, when we consider F = q ◦ A ◦ � then every F -invariant line in
R

2 is the projection by q of an A-invariant 2-dimensional subspace of R3, as it is shown
in the following result. Note that since a line in R

2 may intersect the principal forbidden
line, we will consider that it is F -invariant if it is not the principal forbidden line and the
image of its points which do not lie on PF remains on the line.

Proposition 5. Let A be an invertible real matrix of order 3 such that U0 is not

A-invariant and put F = q ◦A ◦ �.

(1) There is a one-to-one correspondence between F -invariant lines in R
2 and

A-invariant 2-dimensional subspaces of R3.

(2) There exists at least an F -invariant line.

(3) In particular, if F admits two different equilibria, then the line passing through

them is F -invariant.

Proof. Suppose first that U is a 2-dimensional subspace in R
3 which remains

stable by A. Since U and U0 are 2-dimensional and unequal, they have a one-
dimensional intersection and, hence, we may find a basis {u0, u1} of U such that
u0 = (a0, b0, 0)

t and u1 = (a1, b1, 1)
t. It is straightforward to see that the line

L = { (a1, b1) + t(a0, b0) : t ∈ R } is independent of the choice of a0, b0, a1, b1 and

F (a1 + ta0, b1 + tb0) = q
(
A(u1) + tA(u0)

)
.

Since U is stable by A, there exist ξ0, ξ1 ∈ R (depending on t) such that A(u1) +
tA(u0) = ξ0u0+ξ1u1. If ξ1 = 0, then (a1+ta0, b1+tb0) is in the prinicipal forbidden
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line whereas, if ξ1 �= 0, then

F (a1 + ta0, b1 + tb0) = q
(
A(u1) + tA(u0)

)
= u1 +

ξ0

ξ1
u0 ∈ L.

Conversely, if a line L is F -invariant, then we may choose a couple of distinct
points (x1, y1), (x2, y2) within the line which do not belong to PF . Consider U the
linear span of {(x1, y1, 1)

t, (x2, y2, 1)
t}. Since L is F -invariant, for i ∈ {1, 2}, one

has that there exist ξ ∈ R such that

q
(
A(xi, yi, 1)

t
)
= (x1, y1)+ ξ(x2−x1, y2−y1) = q

(
(1− ξ)(x1, y1, 1)

t+ ξ(x2, y2, 1)
t
)
,

which is only possible if

A(xi, yi, 1)
t = λ

(
(1− ξ)(x1, y1, 1)

t + ξ(x2, y2, 1)
t
)

for some λ ∈ R. This proves that U is stable by A.

Recall that every matrix of order three admits, at least, one 2-dimensional
invariant subspace. This fact is clear when the Jordan has (at least) two Jordan
blocks but also in the case of a unique real eigenvalue λ of index 3, where the
subspace ker(A − λI)2 is obviously A-invariant and 2-dimensional. The second
assertion is, hence, straightforward.

Finally, if F admits two different fixed points (a1, b1) and (a2, b2) then the
vectors (a1, b1, 1), (a2, b2, 1) are eigenvalues of A. Therefore, the subspace of R3

spanned by them is A-invariant and it is straightforward to see that the corre-
sponding F -invariant line passes through the fixed points.

Obviously, there is an evident strong relation between the spectral proper-
ties of the matrix A and the dynamics of the corresponding system of difference
equations. However, several facts should be noticed. Firstly, that proportional non-
null matrices generate the same system of equations and, secondly, that matrices
with identical Jordan form may lead to different dynamics. This is obvious if one
considers, for instance, the three similar matrices⎛

⎝ 1 0 0
0 2 0
0 0 3

⎞
⎠ ,

⎛
⎝ 1 0 0

0 2 0
1 0 3

⎞
⎠ ,

⎛
⎝ 1 0 0

0 2 0
1 1 3

⎞
⎠ .

The three of them have the same Jordan form but there are substantial differences
among the corresponding dynamical systems. The first matrix gives rise to a linear
system of difference equations with a unique fixed point and, obviously, no forbidden
set. The systems obtained for the other two matrices do have a forbidden set but
they have a different number of equilibria: one has two and the other one three.
This occurs because the second matrix has an eigenvector whose third coordinate
is null.

This suggests that, although the Jordan form of the matrix A will be of
great importance, one also has to take into account if it is possible or not to find



22 Ignacio Bajo

eigenvectors (or, more precisely, Jordan basis) of A outside the subspace U0. Thus,
in order to reduce our problem to the study of some canonical matrices, we cannot
use the Jordan matrix itself but a canonical form obtained by a stronger similarity.
The key to do this is the use of affine transformations.

Definition 6. An affine transformation on R
2 is the composition of a linear trans-

formation and a translation on R
2. Explicitly, an affine transformation φ : R2 → R

2

is given by φ(X) = MX+X0 for all X ∈ R
2, whereM is a 2×2 matrix an X0 ∈ R

2.
If one considers the 3× 3 matrix

Mφ =

(
M X0

0 1

)
,

then the affine transformation may be expressed as:

φ(X) = q ◦Mφ ◦ �(X).

Obviously, an affine transformation is invertible if and only if Mφ is so and,
in this case,

Mφ−1 = M−1

φ =

(
M−1 −M−1X0

0 1

)
.

Proposition 7. Let A be a real matrix of order 3, F = q ◦ A ◦ � and let φ be

an invertible affine transformation on R
2. The change of variables Xn = φ(X̃n),

n ≥ 0, transforms the system Xn+1 = F (Xn) into X̃n+1 = F̃ (X̃n) with F̃ =
q ◦ (M−1

φ AMφ) ◦ �.

Proof. If Xn = φ(X̃n), for all n ≥ 0, then using assertion (d) of Lemma 1 we have

φ(X̃n+1) = F
(
φ(X̃n)

)
= q

(
A�(qMφ�)(X̃n)

)
= q

(
AMφ�(X̃n)

)
and, therefore,

X̃n+1 = φ−1

(
q
(
AMφ�(X̃n)

))
= q

(
M−1

φ �q
(
AMφ�(X̃n)

))
= q

(
M−1

φ AMφ�(X̃n)
)
,

where Lemma 1 was also used in the last equality.

Remark 8. According to the proposition above, we can transform one of our rational
systems in a simpler one by performing a conjugation of the associated matrix by the
matrix of an affine transformation. Recall that affine transformations preserve parallelism
and, therefore, every conclusion on parallel lines for one of the systems is clearly applicable
to the transformed one.

A conjugation of a matrix A by a matrix Mφ is obviously equivalent to a change
of coordinates in the linear map defined by A to a new basis {v1, v2, v3} with pr(v3) = 1
and pr(v1) = pr(v2) = 0.

Next result describes the case in which there exist eigenvectors of the associ-
ated matrix with null third component. We say that a first order Riccati equation
is proper if it is neither linear nor constant.
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Proposition 9. Let A be an invertible matrix given by (2) with (α, β) �= (0, 0) and
F = q◦A◦�. If A admits a real eigenvector v1 such that pr(v1) = 0 then the system

Xn+1 = F (Xn) can be reduced by an affine transformation to a first order proper

Riccati equation in one variable and a first order linear equation in the other one.

Proof. Let us consider that A admits an eigenvector v1 ∈ R
3 such that pr(v1) = 0

and suppose that λ1 is the corresponding eigenvalue. Choose v2, v3 ∈ R
3 with

pr(v2) = 0, pr(v3) = 1 and such that {v1, v2, v3} is a basis of R3. The associated
matrix to the linear map defined by A in this new basis has the form⎛

⎝ λ1 a1 b1
0 a2 b2
0 a b

⎞
⎠

This means that, under the change of variables defined by the affine transformation
φ such that Mφ = (v1|v2|v3) one obtains the new system

ỹn+1 =
a2ỹn + b2

aỹn + b

x̃n+1 =
λ1

ayn + b
x̃n +

a1ỹn + b1

aỹn + b
,

as claimed. Note that a cannot be null and, therefore, the Riccati equation is
proper.

Remark 10. Notice that in the case of the proposition above the description of the forbid-
den set reduces by the corresponding affine transformation to the one of the forbidden set
for the Riccati equation. Forbidden sets for Riccati equations are well-known (see [8] and
references therein) and, therefore, the forbidden lines for our planar systems can be easily
deduced. For the sake of completeness, we give the explicit description in the following
result.

Corollary 11. Let A be an invertible matrix given by (2) with (α, β) �= (0, 0) and
suppose that it admits an eigenvector v1 associated with a real eigenvalue λ1 such

that pr(v1) = 0.

The forbidden set of the dynamical system defined by F = q◦C◦� is composed

of lines which are parallel to PF and, further :

(a) If the eigenvalues of A are real and trace(A) = λ1, then F = PF

(b) If the eigenvalues of A are real and trace(A) �= λ1, then F has an infinity of

lines converging to an invariant line.

(c) If A has complex eigenvalues whose argument is a rational multiple of π then

F consists of a finite number of lines.

(d) If A has complex eigenvalues whose argument is not a rational multiple of π

then F is a dense set in R
2.
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Proof. As we have shown in the proof of the proposition above, by an affine change
of variables we can consider that

A =

⎛
⎝ λ1 a1 b1

0 a2 b2
0 a b

⎞
⎠ .

It is obvious that if {μn}n≥1 denote the forbidden points for the proper Riccati
equation

ỹn+1 =
a2ỹn + b2

aỹn + b
,

then the forbidden set of F is given by F =
⋃

n≥1
{ (x, y) ∈ R

2 : y = μn }. The
assymptotic behaviour of the set {μn} in terms of the eigenvalues of the matrix

B =

(
a2 b2
a b

)

are well-known and can also be easily deduced from the description of the forbidden
set given, for instance, in [8]. Explicitly, one has that when the eigenvalues of B are
real and distinct in modulus, {μn} converges to the fixed point corresponding to
the eigenvalue of minimal modulus; when they are real and equal, the forbidden set
accumulates in the unique fixed point; when they are real with the same modulus
and distinct sign, the equation is globally 2-periodic and there is only one forbidden
point; if the eigenvalues are complex numbers whose argument is a rational multiple
of π, the equation is globally periodic and there are, at most, m − 1 forbidden
points where m denotes the minimal period; and, finally, if they are complex and
their argument is not a rational multiple of π, then {μn} is dense in the real line.
Therefore, assertions (a),(c) and (d) are obvious and, in order to prove (b) it suffices

to recall that if μ is a fixed point of ỹn+1 =
a2ỹn + b2

aỹn + b
, then y = μ is clearly an

invariant line for

F (x, y) =

(
λ1

ayn + b
x̃n +

a1ỹn + b1

aỹn + b
,
a2ỹn + b2

aỹn + b

)
.

Actually, it is the invariant line obtained by the projection of the A-invariant sub-
space spanned by {(1, 0, 0), (0, μ, 1)}.

4. FORBIDDEN SETS IN THE CASES WHICH ARE NOT
REDUCIBLE TO A SCALAR EQUATION

In this section we always consider that the 3 × 3 matrix A given by (2) is
non singular and its eigenvectors lie outside the subspace U0. In such case, the
geometric multiplicity of each eigenvalue must be 1, otherwise the corresponding
eigenspace would intersect the 2-dimensional subspace U0. Besides, since A has
odd order, it admits at least a real eigenvalue λ. We begin with the following result
which reduces our problem to a certain “canonical” matrix:
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Proposition 12. Let A be non singular and suppose that its eigenvectors lie outside

the subspace U0. There is an invertible affine transformation φ on R
2 such that

M−1

φ AMφ =

(
J 0
h λ

)

where J is a 2× 2 real Jordan matrix and h is non-null.

Moreover, when A has a unique eigenvalue of multiplicity 3, M−1

φ AMφ can

be taken to be the lower triangular Jordan form; in the remaining cases, if J has

two real eigenvalues one can choose h = (1, 1)(J − λI) whereas if it has complex

eigenvalues or a unique real eigenvalue and J is lower triangular, one can choose

h = (0, 1)(J − λI).

Proof. In case that there is a unique eigenvalue of multiplicity 3 (which means a
unique Jordan block), one chooses a basis {w1, w2, v} for which the Jordan form is
lower triangular and pr(v) = 1 (dividing the three vectors by the third component
of the eigenvector if necessary). Now, let us consider

v1 = w1 − pr(w2)w2 +
(
pr(w2)

2 − pr(w1)
)
v , v2 = (A− λI)v1.

A direct calculation proves that {v1, v2, v} is again a Jordan basis for a lower
triangular Jordan form and that pr(v1) = pr(v2) = 0. As a consequence, Mφ =
(v1|v2|v) is the matrix associated with an affine transformation, and one obviously
has

M−1

φ AMφ =

⎛
⎝ λ 0 0

1 λ 0
0 1 λ

⎞
⎠ .

When the Jordan form of A has, at least, two Jordan blocks, we can find a
real Jordan basis {w1, w2, v} such that v is an eigenvector associated with λ and
the real Jordan form is

P−1AP =

(
J 0
0 λ

)
,

where P = (w1|w2|v). Since v is an eigenvector, we have pr(v) �= 0 and may suppose
that pr(v) = 1 (otherwise, it suffices to divide v by its third component). Hence, if
we consider the new basis {v1, v2, v} defined by vi = wi − pr(wi)v for i = 1, 2, one
immediately sees that pr(vi) = 0, which means that Mφ = (v1|v2|v) is the matrix
associated with an affine transformation, and

Mφ = P

(
I 0
−p 1

)
,

where p =
(
pr(w1), pr(w2)

)
and I denotes the 2 × 2 identity matrix. This implies

that

M−1

φ AMφ =

(
I 0
p 1

)(
J 0
0 λ

)(
I 0
−p 1

)
=

(
J 0

p(J − λI) λ

)
.
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Notice that p �= (0, 0) because U0 is not A-invariant and since the geometric mul-
tiplicity of λ is 1, it is obvious that J − λI is invertible; hence, h �= (0, 0).

The final assertion concerning h can be obtained by an adequate election of
the Jordan basis. If J has two real eigenvalues one has to choose the corresponding
eigenvectorsw1, w2 such that pr(wi) = 1, which is always possible. If J has a unique
eigenvalue λ1, one chooses w1 ∈ Ker(A − λ1I)

2 ∩ U0 and w2 = (A − λ1I)v1 and
divide both of them by pr(w2) if necessary. Finally, in the case that J has complex
eigenvalues, it suffices to take a basis of the 2-dimensional invariant subspace such
that w1 ∈ U0 and pr(w2) = 1, which is always possible.

Next we give the explicit description of the forbidden sets for the canonical
systems. We shall study the case with only real eigenvalues and the case admitting
complex eigenvalues separately.

Theorem 13. Let λ ∈ R, λ �= 0 and consider that the matrix

C =

(
J 0
h λ

)

where J is an invertible lower triangular Jordan form with real eigenvalues and h

is given as in the proposition above.

The forbidden set of the dynamical system defined by F = q ◦ C ◦ � is given

as follows :

(a) If C has the unique eigenvalue λ with multiplicity 3, then

F =
⋃
n≥1

{
(x, y) :

n2 − n

2λ2
x+

n

λ
y + 1 = 0

}
,

which consist of an infinite number of non-parallel lines converging to the

unique F -invariant line.

(b) If C has two distinct eigenvalues λ1, λ and the multiplicity of λ1 is 2, then

F =
⋃
n≥1

{
(x, y) :

nλ n−1

1

λn
x+

λ n
1
− λn

λn
y + 1 = 0

}
.

It consists of an infinite number of lines converging to one of the F -invariant

lines. More precisely,

(b.1) If |λ| > |λ1|, then the forbidden lines are not parallel and converge to

the F -invariant line defined by the A-invariant subspace Ker(A−λ1I)
2.

(b.2) If |λ| < |λ1|, then the forbidden lines are not parallel and converge to

the F -invariant line passing through the fixed points.

(b.3) If λ = −λ1, then the forbidden lines corresponding to an odd n are

non-parallel and the ones corresponding to an even n are parallel. Both

subsets of lines converge to the F -invariant line connecting the fixed

points.
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(c) If C admits three distinct eigenvalues λ1, λ2, λ, then

F =
⋃
n≥1

{
(x, y) :

(
(λ1/λ)

n − 1
)
x+

(
(λ2/λ)

n − 1
)
y + 1 = 0

}
.

(c.1) If there is a unique eigenvalue of maximal modulus, F consists of an

infinite number of non-parallel lines converging to the F -invariant line

passing through the fixed points associated with the other two eigenvalues.

(c.2) If two eigenvalues have maximal modulus, the lines corresponding to

an odd n are non-parallel and converge to the line passing through the

fixed point associated with the eigenvalue of minimal modulus and the

midpoint of the other two equilibria, whereas the ones corresponding to

an even n are parallel to the F -invariant line connecting the fixed points

related to eigenvalues of maximal modulus and tend to the one passing

through the other fixed point.

Proof. When C has a unique eigenvalue of multiplicity 3 then, according to the
proposition above, C is exactly its lower triangular form and, therefore,

Cn =

⎛
⎜⎝

λn 0 0
nλn−1 λn 0

n2 − n

2
λn−2 nλn−1 λn

⎞
⎟⎠ .

It is then obvious that

F =
⋃
n≥1

{
(x, y) :

n2 − n

2λ2
x+

n

λ
y + 1 = 0

}
.

As n tends to ∞, the lines in the forbidden set approach the line x = 0, which
is the F -invariant line given by the unique 2-dimensional C-invariant subspace:
Ker(C − λI)2 = {(x, y, z) : x = 0}.

In the remaining cases, one easily sees that

Cn =

(
Jn 0
hSn λn

)

where Sn =

n−1∑
k=0

λkJn−1−k. Since λ cannot be an eigenvalue of J , (J − λI) is

invertible and we actually have Sn = (J−λI)−1(Jn−λnI). Recall that h was given
by h = (1, 1)(J − λI) if J had two different real eigenvalues and h = (0, 1)(J − λI)
otherwise. Thus, one immediately gets

F =
⋃
n≥1

{
(x, y) : (1, 1)(Jn − λnI)λ−n(x, y)t + 1 = 0

}
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in the case when J admits two different real eigenvalues, and

F =
⋃
n≥1

{
(x, y) : (0, 1)(Jn − λnI)λ−n(x, y)t + 1 = 0

}
in the cases in which J has a unique real Jordan block. The explicit form of F in
each case is now directly deduced by the explicit calculation of Jn. Thus it only
remains to study the asymptotic behavior of the forbidden lines.

Let us first study the case of three distinct eigenvalues. In such case we have

C =

⎛
⎝ λ1 0 0

0 λ2 0
λ1 − λ λ2 − λ λ

⎞
⎠ .

The fixed points are (1, 0), (0, 1), (0, 0), which are respectively associated with the
eigenvalues λ1, λ2, λ and the F -invariant lines are x+y = 1, y = 0 and x = 0. If we
suppose that |λ| > |λi| for i = 1, 2 then the lines of the forbidden set clearly tend
to the line x+y = 1. But when we suppose |λ| > λ1 and λ2 = −λ we have that the
forbidden lines are

(
(λ1/λ)

n−1
)
x+1 = 0 for an even n and

(
(λ1/λ)

n−1
)
x−2y+1 =

0 for an odd n. They clearly converge, respectively, to x = 1 and x = 1 − 2y, as
claimed in (c).

In the case of two distinct eigenvalues λ1, λ where the multiplicity of λ1 is 2,
the matrix C has the form

C =

⎛
⎝ λ1 0 0

1 λ1 0
1 λ1 − λ λ

⎞
⎠ .

The F -invariant line passing through the fixed points (0, 1), (0, 0) is clearly x = 0
and the F -invariant line obtained by projection of Ker(C − λ1I) is y = 1. When
|λ| > |λ1| the forbidden lines obviously tend to −y + 1 = 0 and if |λ| < |λ1| then
they tend to x = 0. Finally, for λ = −λ1, the forbidden lines are given by

(−1)n−1
n

λ
x+

(
(−1)n − 1

)
y + 1 = 0,

which converge to x = 0 and are parallel to such line whenever n is even.

Next theorem describes the forbidden set when complex eigenvalues arise.
Since q ◦ C ◦ � = q ◦ (−C) ◦ �, we can suppose that the real eigenvalue es actually
positive.

Theorem 14. Let λ, r ∈ (0,∞) and θ ∈ (0, π) ∪ (π, 2π) and consider the matrix

C =

(
J 0
h λ

)

where h = (0, 1)(J − λI) and

J =

(
r cos(θ) r sin(θ)
−r sin(θ) r cos(θ)

)
.
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The forbidden set of the dynamical system defined by F = q ◦ C ◦ � is

F =
⋃
n≥1

{
(x, y) : (r/λ)n sin(nθ)x−

(
(r/λ)n cos(nθ)− 1

)
y − 1 = 0

}
.

(a) If r < λ, then the forbidden lines converge to the unique F -invariant line.

(b) If r > λ and θ is a rational multiple of π, then F is the union of a finite

number of sheaves of lines. Each of these sheaves is composed of an infinity

of non-parallel lines converging to a line passing through the fixed point.

(c) If r > λ and θ is not a rational multiple of π, then F is a dense subset of R2.

(d) If r = λ and θ is a rational multiple of π, then F is globally periodic and F
is a finite number of non-parallel lines.

(e) If r = λ but θ is not a rational multiple of π, denote by P the parabola with

focus at the fixed point and whose directrix is the F -invariant line and by Pext

the connected component of R2 \ P not containing the equilibrium. Then F
is a dense subset in Ω = P ∪ Pext.

Proof. As in the proof of the theorem above,

Cn =

(
Jn 0
hSn λn

)

where Sn = (J − λI)−1(Jn − λnI). Hence the forbidden lines are given by

(0, 1)(Jn − λnI)(x, y)t + λn = 0 , n ≥ 1

and, thus, the explicit expression of F is directly deduced from

Jn =

(
rn cos(nθ) rn sin(nθ)
−rn sin(nθ) rn cos(nθ)

)
.

It should be noticed that the unique F -invariant line is the line y = 1 and
the fixed point is (0, 0). Clearly, if r < |λ|, then the forbidden lines tend to y = 1.

Let us suppose now that r > |λ|. If θ is a rational multiple of π, let s be the
smallest positive integer such that sθ = 2mπ for some m ∈ N, then

F =

s⋃
k=1

Fk

Fk =
⋃
j≥0

{
(x, y) : (r/λ)k+jms sin(kθ)x−

(
(r/λ)k+jms cos(kθ)− 1

)
y − 1 = 0

}

It is straightforward to see that the lines of each Fk approach the line sin(kθ)x =
cos(kθ)y, which obviously contains the fixed point (0, 0). It θ is not a rational
multiple of π then the set

{(
cos(nθ), sin(nθ)

)
: n ∈ N, n ≥ 1

}
is dense in the unit
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circle. Let us consider a point (x0, y0) ∈ R
2, with y0 �= 0 and take an increasing

sequence {nk}k≥1 ⊂ N such that

lim
k→∞

(
cos(nkθ), sin(nkθ)

)
=

1

||(x0, y0)||
(x0, y0).

The corresponding forbidden line for nk is

sin(nkθ)x − cos(nkθ)y − (λ/r)ny − (λ/r)n = 0.

Hence, if we take

xk =
cos(nkθ)y0 + (λ/r)nky0 + (λ/r)nk

sin(nkθ)
,

then (xk, y0) ∈ F and

lim
k→∞

xk = lim
k→∞

cos(nkθ)y0
sin(nkθ)

= x0.

This proves that (x0, y0) is adherent to F . Therefore, the closure of F contains the
closure of the set {(x0, y0) : y0 �= 0} which is, evidently, the whole R

2.

Finally, let us consider that r = λ. It is clear that if θ is a rational multiple
of π, then F is globally periodic and the forbidden set is

F =
s⋃

k=1

{
(x, y) : sin(kθ)x−

(
cos(kθ)− 1

)
y − 1 = 0

}
where s is the minimum period. When θ is not so, we obviously have sin(nθ) �= 0
for all n ≥ 1 and the forbidden lines are:

x =
(cos(nθ)− 1)y + 1

sin(nθ)
, n ≥ 1.

Hence, if (x, y) ∈ F , then we have

x2 + 2y − 1 =

(
cos(nθ)− 1

)2
y2 + 2y

(
cos(nθ)− 1 + sin2(nθ)

)
+ 1− sin2(nθ)

sin2(nθ)

=

(
cos(nθ)− 1

)2
y2 − 2y

(
cos2(nθ)− cos(nθ)

)
+ cos2(nθ)

sin2(nθ)

=

(
(cos(nθ)− 1)y − cos(nθ)

)2
sin2(nθ)

≥ 0.

This means that F is contained in the subset Ω = {(x, y) : x2+2y−1 ≥ 0}, which
is the set of points P ∪ Pext. To see that F is actually dense in Ω, let us consider
(x0, y0) such that x 2

0 + 2y0 − 1 > 0 and choose

a =
y 2
0
− y0 + |x0|

√
x 2
0
+ 2y0 − 1

x 2
0
+ y 2

0

.
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One easily sees that a is one of the solutions to the equation

(1 − a2)x 2

0
=

(
(a− 1)y0 + 1

)2
.

Therefore, one has that |a| ≤ 1 and, further, one can use both equations to see that
|a| �= 1. This implies that the following identity holds for one of the two possible
signs:

x0 =
(a− 1)y0 + 1

±
√
1− a2

.

Again, the density of
{(

cos(nθ), sin(nθ)
)

: n ∈ N, n ≥ 1
}
in the unit circle shows

that we can find an increasing sequence {nk}k≥1 ⊂ N such that

lim
k→∞

(
cos(nkθ), sin(nkθ)

)
=

(
a,±

√
1− a2

)
,

where the sign is the same as in the expression of x0 above. Thus, if we take

xk =

(
cos(nkθ)− 1

)
y0 + 1

sin(nkθ)
,

then {(xk, y0)}k≥1 is a sequence of points in F which clearly converge to (x0, y0).
This shows that the adherence of F contains Pext and, thus, also contains its closure
Ω.

Remark 15. An affine transformation transforms a parabola in another parabola but, in
general, it does not preserve the directrix and the focus. Thus, when one transforms a
general system with a matrix A in a new one with a matrix C as the one given in the
theorem above, the assertion (e) in the theorem is still valid except in which respects to
the focus and directrix of P .
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