
Applicable Analysis and Discrete Mathematics
available online at http://pefmath.etf.rs

Appl. Anal. Discrete Math. 9 (2015), 150–167. doi:10.2298/AADM150126002D

EXISTENCE OF SOLUTIONS FOR HYBRID

FRACTIONAL PANTOGRAPH EQUATIONS

Mohamed Abdalla Darwish, Kishin Sadarangani

In this paper, we study the existence of the hybrid fractional pantograph
equation





Dα

0+

[
x(t)

f(t, x(t), x(µt))

]
= g

(
t, x(t), x(σt)

)
, 0 < t < 1,

x(0) = 0,

where α, µ, σ ∈ (0, 1) and Dα

0+
denotes the Riemann-Liouville fractional

derivative. The results are obtained using the technique of measures of
noncompactness in the Banach algebras and a fixed point theorem for the
product of two operators verifying a Darbo type condition. Some examples
are provided to illustrate our results.

1. INTRODUCTION

Fractional differential equations are a very important tool in modelling many phe-
nomena of physics and, therefore, they deserve an independent study of their the-
ories parallel to the well-known theory of differential equations, [10, 12, 15, 17].
On the other hand, a great number of papers about differential and integral equa-
tions with a modified argument have appeared in the literature recently. Such
equations arise in a wide variety of applications such as the modelling of problems
from the natural and social sciences, for example, physics, biology and economics.
A special class of these equations is the differential equation with affine modification
of the argument which can be delay differential equations or differential equations
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with linear modification of the argument. Results concerning with such kind of
equations appear in the papers [5, 6, 7, 8, 11, 14, 16, 18, 20], for example.

One of the very special differential equations with linear modification of the
argument is the pantograph equation

(1)

{
y′(t) = ay(t) + by(λt), 0 ≤ t ≤ T,

y(0) = y0,

where 0 < λ < 1. This equation appears in different fields of pure and applied
mathematics such as number theory, dynamical systems, probability, quantum me-
chanics, etc.

Recently, in [2], the authors considered the fractional version of the panto-
graph equation, namely

(2)

{
Dα

0+u(t) = g
(
t, u(t), u(λt)

)
, t ∈ J = [0, T ],

u(0) = u0,

where α, λ ∈ (0, 1). The Banach contraction principle was the main tool used in
this study.

The following hybrid differential of first order

(3)





d

dt

[
x(t)

f(t, x(t))

]
= g

(
t, x(t)

)
, t ∈ J = [0, T ),

x(t0) = x0 ∈ R,

was studied by Dhage and Lakshmikantham [9], under the assumptions f ∈
C(J × R,R \ {0}) and g ∈ C(J × R,R).
In [21], Zhao et al. discussed the fractional version of Eq.(3), i.e.,

(4)





Dα
0+

[
x(t)

f
(
t, x(t)

)
]
= g

(
t, x(t)

)
, t ∈ J, 0 < α < 1,

x(0) = 0,

where f ∈ C(J ×R,R \ {0}) and g ∈ C(J ×R,R), a fixed point theorem in Banach
algebras was the main tool used in this work.

In this paper, we study the following hybrid fractional pantograph equation

(5)





Dα
0+

[
x(t)

f
(
t, x(t), x(µt)

)
]
= g

(
t, x(t), x(σt)

)
, 0 < t < 1,

x(0) = 0,

where 0 < α, µ, σ < 1, f ∈ C([0, 1]× R× R,R \ {0}) and g ∈ C([0, 1]× R× R,R).
The main tool in our study is a fixed point theorem for the product of two opera-
tors satisfying a condition of Darbo with respect to a measure of noncompactness.
Moreover, we give some applications and examples where our results may be applied
and we also compare these results with others appearing in the literature.
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2. RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE AND

INTEGRAL

We recall some definitions and results about fractional calculus theory from [13].

Definition 2.1. The fractional Riemann-Liouville derivative of order α > 0 of a

continuous function h : (0,∞) → R is defined by

Dα
0+h(x) =

1

Γ(n− α)

dn

dxn

∫ x

0

h(s)

(x− s)α−n+1
ds

provided that the right side is pointwise defined on (0,∞), where n = [α] + 1 and

[α] denotes the integer part of α.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 of a

function h : (0,∞) → R is defined by

Iα0+h(x) =
1

Γ(α)

∫ x

0

h(s)

(x− s)1−α
ds,

provided that the right side is pointwise defined on (0,∞).

Lemma 2.3. Let h ∈ L1(0, 1) and 0 < α < 1. Then

(a) Dα
0+I

α
0+h(x) = h(x)

(b) Iα0+D
α
0+h(x) = h(x)−

I1−α

0+
h(x)|x=0

Γ(α)
xα−1 a.e. on (0, 1).

Lemma 2.4. Let 0 < α < 1 and suppose that f ∈ C([0, 1] × R × R,R \ {0}) and

y ∈ C[0, 1]. Then, the unique solution of the fractional hybrid initial value problem

with linear modification of the argument

(6)





Dα
0+

[
x(t)

f(t, x(t), x(µx))

]
= y(t), 0 < t < 1,

x(0) = 0,

is given by

x(t) =
f(t, x(t), x(µx))

Γ(α)

∫ t

0

y(s)

(t− s)1−α
ds, t ∈ [0, 1].

Proof. Let x(t) be a solution of (6). Applying the operator Iα0+ to both sides of
(6), taking into account Lemma 2.3, we obtain,

Iα0+D
α
0+

[
x(t)

f(t, x(t), x(µx))

]
= Iα0+y(t),

or

x(t)

f(t, x(t), x(µx))
−

I1−α
0+

x(t)

f(t, x(t), x(µx))

∣∣∣
t=0

Γ(α)
tα−1 = Iα0+y(t).



Existence of solutions of hybrid fractional pantograph equations 153

Since
x(t)

f(t, x(t), x(µx))

∣∣∣
t=0

=
x(0)

f(0, x(0), x(0))
=

0

f(0, 0, 0)
= 0 (because f(0, 0, 0) 6= 0),

we have

x(t) =
f
(
t, x(t), x(µx)

)

Γ(α)

∫ t

0

y(s)

(t− s)1−α
ds.

Conversely, suppose that x(t) has the expression

x(t) =
f
(
t, x(t), x(µx)

)

Γ(α)

∫ t

0

y(s)

(t− s)1−α
ds,

or

(7) x(t) = f
(
t, x(t), x(µx)

)
Iα0+y(t).

Applying Dα
0+ on both sides of (7) after dividing both sides by f

(
t, x(t), x(µx)

)
, by

the aid of Lemma 2.3, we obtain,

Dα
0+

[
x(t)

f(t, x(t), x(µx))

]
= Dα

0+I
α
0+y(t) = y(t), 0 < t < 1.

Moreover, putting t = 0 in (7), we have x(0) = f
(
0, x(0), x(0)

)
· 0 = 0. This proves

that x(t) is a solution of (6) which completes the proof.

3. MEASURE OF NONCOMPACTNESS

Assume that E is a real Banach space with the norm ‖.‖ and the zero element θ. By
B(x, r) we denote the closed ball in E centered at x with radius r. By Br we denote
the ball B(θ, r). If X is a nonempty subset X of E then X and ConvX denote
the closure and the convex closure of X, respectively. By diamX we denote the
diameter of a bounded set X and ‖.‖ is the norm of X, i.e., ‖X‖ = sup{‖x‖ : x ∈
X}. Further, by ME we denote the family of all nonempty and bounded subsets of
E and by NE its subfamily consisting of all relatively compact subsets.

In this paper, we accept the following definition of measure of noncompactness
[3].

Definition 3.5. A mapping µ : ME → R+ = [0,∞) will be called a measure of

noncompactness in E if it satisfies the following conditions :

1◦ The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE .

2◦ X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

3◦ µ(X) = µ(X).

4◦ µ(ConvX) = µ(X).

5◦ µ(µX + (1 − µ)Y ) ≤ µ µ(X) + (1− µ) µ(Y ) for µ ∈ [0, 1].
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6◦ If (Xn) is a sequence of closed subsets of ME such that Xn+1 ⊂ Xn and

lim
n→∞

µ(Xn) = 0 then X∞ = ∩∞

n=1Xn 6= φ.

The family kerµ appearing in 1◦ is called the kernel of the measure of non-
compactness µ. Notice that the set X∞ appearing in 6◦ belongs to kerµ. Indeed,
since µ(X∞) ≤ µ(Xn) for any n = 1, 2, . . . , we infer that µ(X∞) = 0 which means
that X∞ ∈ kerµ.

In the sequel, we assume that the space E has structure of Banach algebra.
We denote by xy the products of two elements x, y ∈ E and by XY the set defined
by XY = {xy : x ∈ X, y ∈ Y }.

Now, we recall the following concept which will play an important role in our
considerations (see [4]).

Definition 3.6. Let E be a Banach algebra. We say that a measure of noncom-

pactness µ defined on E satisfies condition (m) if the following is satisfied

µ(XY ) ≤ ‖X‖µ(Y ) + ‖Y ‖µ(X), for any X, Y ∈ ME .

Aghajani et al. [1] proved the following generalization of fixed point theorem
due to Darbo.

Theorem 3.7 (Theorem 2.2 of [1]). Let Ω be a nonempty, bounded, closed and

convex subset of a Banach space E and let T : Ω → Ω be a continuous operator

satisfying

(8) µ(TX) ≤ ϕ(µ(X)),

for any nonempty subset X of Ω, where µ is an arbitrary measure of noncompactness

and ϕ : R+ → R+ is a nondecreasing function such that lim
n→∞

ϕn(t) = 0 for each

t ∈ R+, where ϕn denotes the n-iteration of ϕ.

Then T has at least one fixed point in Ω.

Also, the authors of [1] proved the following lemma which will be useful in
our considerations.

Lemma 3.8 (Lemma 2.1 of [1]). Let ϕ : R+ → R+ be a nondecreasing and upper

semicontinuous function. Then, the following conditions are equivalent :

(i) lim
n→∞

ϕn(t) = 0, for any t ≥ 0

(ii) ϕ(t) < t, for any t > 0.

For convenience, we denote by A the class of functions given by

A = {ϕ : R+ → R+ : ϕ is nondecreasing and lim
n→∞

ϕn(t) = 0 for any t > 0},

where ϕn denotes the n-iteration of ϕ.
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Remark 3.9. It is easy to see that if ϕ ∈ A then ϕ(t) < t, for any t > 0. Indeed, in
contrary case, we can find t0 > 0 and t0 ≤ ϕ(t0). By using the nondecreasing character of
ϕ, we have

0 < t0 ≤ ϕ(t0) ≤ ϕ
2(t0) ≤ . . . ≤ ϕ

n(t0) ≤ . . . ,

and, consequently, 0 < t0 ≤ lim
n→∞

ϕn(t0) which contradicts the fact that ϕ ∈ A. Moreover,

this proves that if ϕ ∈ A then ϕ is continuous at t0 = 0.

Remark 3.10. By using Remark 3.9, the contractive condition appearing in Theorem 3.7
can be rewritten as µ(TX) < µ(X) for any X ∈ ME \ kerµ and, therefore, Theorem 3.7
is a immediate consequence of Sadovskǐı theorem [19].

In this paper, we work in the space C[0, 1] consisting of all real functions
defined and continuous on the interval [0, 1] with the usual supremum norm

‖x‖ = sup{|x(t)| : t ∈ [0, 1]},

for x ∈ C[0, 1]. Notice that the space C[0, 1] is a Banach algebra, where the multi-
plication is defined as the usual product of real functions.

Next, we present the measure of noncompactness in C[0, 1] which will be used
in our study. Let us fix a set X ∈ MC[0,1] and ε > 0. For x ∈ X, we denote by
ω(x, ε) the modulus of continuity of x, i.e.,

ω(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, 1], |t− s| ≤ ε}.

Further, put
ω(X, ε) = sup{ω(x, ε) : x ∈ X}

and
ω0(X) = lim

ε→0
ω(X, ε).

In [3], it is proved that ω0(X) is a measure of noncompactness in C[0, 1].

Proposition 3.11. The measure of noncompactness ω0 on C[0, 1] satisfies condi-

tion (m).

Proof. Fix X,Y ∈ MC[0,1], ε > 0 and t, s ∈ [0, 1] with |t− s| ≤ ε. Then, for x ∈ X

and y ∈ Y, we have,

|x(t)y(t) − x(s)y(s)| ≤ |x(t)y(t) − x(t)y(s)|+ |x(t)y(s) − x(s)y(s)|

= |x(t)| |y(t)− y(s)|+ |y(s)| |x(t)− x(s)|

≤ ‖x‖ ω(y, ε) + ‖y‖ ω(x, ε).

This gives us,
ω(xy, ε) ≤ ‖x‖ ω(y, ε) + ‖y‖ ω(x, ε),

and, consequently,

ω(XY, ε) ≤ ‖X‖ ω(Y, ε) + ‖Y ‖ ω(X, ε).

Taking ε → 0, we get,

ω0(XY ) ≤ ‖X‖ ω0(Y ) + ‖Y ‖ ω0(X).
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4. MAIN RESULTS

Here, we study (5) under the following assumptions:

(a1) f ∈ C([0, 1]× R× R,R \ {0}) and g ∈ C([0, 1]× R× R,R).

(a2) The functions f and g satisfy

|f(t, x1, x2)− f(t, x̂1, x̂2)| ≤ ϕ1 (max(|x1 − x̂1|, |x2 − x̂2|))

and
|g(t, x1, x2)− g(t, x̂1, x̂2)| ≤ ϕ2 (max(|x1 − x̂1|, |x2 − x̂2|)) ,

respectively, for any t ∈ [0, 1] and x1, x̂1, x2, x̂2 ∈ R, where ϕ1, ϕ2 ∈ A and
ϕ1 is continuous.

Notice that assumption (a1) gives us the existence of two nonnegative con-
stants k1 and k2 such that |f(t, 0, 0)| ≤ k1 and |g(t, 0, 0)| ≤ k2 for any t ∈ [0, 1].

(a3) There exists r0 > 0 satisfying the inequalities

(ϕ1(r) + k1) · (ϕ2(r) + k2) ≤ rΓ(α + 1)

and
ϕ2(r) + k2 ≤ Γ(α+ 1).

For further purposes, by Lemma 2.4 we have that any solution of (5) must satisfy
the integral equation

x(t) =
f(t, x(t), x(µt))

Γ(α)

∫ t

0

g
(
s, x(s), x(σs)

)

(t− s)1−α
ds, 0 ≤ t ≤ 1.

Therefore, the fixed points of the operator T defined on C[0, 1] by

(9) (T x)(t) =
f(t, x(t), x(µt))

Γ(α)

∫ t

0

g
(
s, x(s), x(σs)

)

(t− s)1−α
ds, 0 ≤ t ≤ 1,

are the solutions of Eq.(5).

Theorem 4.12. Under assumptions (a1) − (a3), (5) has at least one solution in

C[0, 1].

Proof. Consider the operators F and G defined on C[0, 1] by

(Fx)(t) = f
(
t, x(t), x(µt)

)

and

(Gx)(t) =
1

Γ(α)

∫ t

0

g
(
s, x(s), x(σs)

)

(t− s)1−α
ds
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for any x ∈ C[0, 1] and t ∈ [0, 1]. Therefore, T x = (Fx) · (Gx), for any x ∈ C[0, 1].

For better readability, we divide the proof in several steps.

Step 1. T : C[0, 1] → C[0, 1].

In fact, we prove that Fx,Gx ∈ C[0, 1] for x ∈ C[0, 1] and, since the product
of continuous functions is a continuous function, our claim will be proved.

First, we prove that if x ∈ C[0, 1] then Fx ∈ C[0, 1]. By assumption (a1)
and, since that x ∈ C[0, 1] then x ◦ λ ∈ C[0, 1], where λ : [0, 1] → [0, 1] is given
by λ(t) = µt, we infer that Fx ∈ C[0, 1]. Now, we prove that if x ∈ C[0, 1] then
Gx ∈ C[0, 1]. We fix t0 ∈ [0, 1] and let (tn) be a sequence in [0, 1] such that tn → t0.

We have to prove that (Gx)(tn) → (Gx)(t0). In fact, without loss of generality we
can suppose that tn > t0. Then, we have

|(Gx)(tn)− (Gx)(t0)| =
1

Γ(α)

∣∣∣∣
∫ tn

0

g(s, x(s), x(σs))

(tn − s)1−α
ds−

∫ t0

0

g(s, x(s), x(σs))

(t0 − s)1−α
ds

∣∣∣∣

≤
1

Γ(α)

∣∣∣∣
∫ tn

0

g(s, x(s), x(σs))

(tn − s)1−α
ds−

∫ tn

0

g(s, x(s), x(σs))

(t0 − s)1−α
ds

∣∣∣∣

+
1

Γ(α)

∣∣∣∣
∫ tn

0

g(s, x(s), x(σs))

(t0 − s)1−α
ds−

∫ t0

0

g(s, x(s), x(σs))

(t0 − s)1−α
ds

∣∣∣∣

≤
1

Γ(α)

∫ tn

0

∣∣(tn − s)α−1 − (t0 − s)α−1
∣∣ |g(s, x(s), x(σs))|ds

+
1

Γ(α)

∫ tn

t0

∣∣(t0 − s)α−1
∣∣ |g(s, x(s), x(σs))| ds.

Since g ∈ C([0, 1]×R×R,R), g is bounded on [0, 1]× [−‖x‖, ‖x‖]× [−‖x‖, ‖x‖]. Put
M = sup{|g(s, y1, y2)| : s ∈ [0, 1], y1, y2 ∈ [−‖x‖, ‖x‖]}. From the last estimate, we
get

|(Gx)(tn)− (Gx)(t0)| ≤
M

Γ(α)

∫ tn

0

∣∣(tn − s)α−1 − (t0 − s)α−1
∣∣ ds

+
M

Γ(α)

∫ tn

t0

∣∣(t0 − s)α−1
∣∣ ds.

Since 0 < α < 1 and tn > t0, we have,

|(Gx)(tn)− (Gx)(t0)| ≤
M

Γ(α)

[ ∫ t0

0

∣∣(tn − s)α−1 − (t0 − s)α−1
∣∣ ds

+

∫ tn

t0

∣∣(tn − s)α−1 − (t0 − s)α−1
∣∣ds

]
+

M

Γ(α)

∫ tn

t0

1

(s− t0)1−α
ds

=
M

Γ(α)

[ ∫ t0

0

[
(t0 − s)α−1 − (tn − s)α−1

]
ds

+

∫ tn

t0

ds

(tn − s)1−α
+

∫ tn

t0

ds

(s− t0)1−α

]
+

M

Γ(α)

∫ tn

t0

1

(s− t0)1−α
ds
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≤
M

Γ(α+ 1)
[(tn − t0)

α + tα0 − tαn + (tn − t0)
α + (tn − t0)

α] +
M

Γ(α+ 1)
(tn − t0)

α

≤
4M

Γ(α+ 1)
(tn − t0)

α +
M

Γ(α+ 1)
(tα0 − tαn) <

4M

Γ(α+ 1)
(tn − t0)

α,

where we have used the fact that tα0 − tαn < 0 in the last inequality. Since tn → t0,

the last estimate gives us that (Gx)(tn) → (Gx)(t0). Therefore, Gx ∈ C[0, 1]. This
proves that if x ∈ C[0, 1] then T x ∈ C[0, 1].

Step 2. An estimate of ‖T x‖ for x ∈ C[0, 1].

Fix x ∈ C[0, 1] and t ∈ [0, 1]. Then, taking into account our assumptions, we
get,

|(T x)(t)| = |(Fx)(t)| |(Gx)(t)|

= |f(t, x(t), x(µt))|

∣∣∣∣
1

Γ(α)

∫ t

0

g
(
s, x(s), x(σs)

)

(t− s)1−α
ds

∣∣∣∣
≤

[
|f(t, x(t), x(µt)) − f(t, 0, 0)|+ |f(t, 0, 0)|

]

×

[
1

Γ(α)

∣∣∣
∫ t

0

g
(
s, x(s), x(σs)

)
− g(s, 0, 0)

(t− s)1−α
ds+

∫ t

0

g(s, 0, 0)

(t− s)1−α
ds

∣∣∣
]

≤
1

Γ(α)
[ϕ1(max(|x(t)|, |x(µt)|)) + k1]

[ ∫ t

0

|g
(
s, x(s), x(σs)

)
− g(s, 0, 0)|

(t− s)1−α
ds

+

∫ t

0

|g(s, 0, 0)|

(t− s)1−α
ds

]

≤
1

Γ(α)
[ϕ1 (max(‖x‖, ‖x‖)) + k1]

[∫ t

0

ϕ2 (max(|x(s)|, |x(σs)|))

(t− s)1−α
ds

+ k2

∫ t

0

ds

(t− s)1−α

]

≤
1

Γ(α)
[ϕ1 (max(‖x‖, ‖x‖)) + k1] · [ϕ2 (max(‖x‖, ‖x‖)) + k2]

∫ t

0

ds

(t− s)1−α

≤
1

Γ(α+ 1)
(ϕ1(‖x‖) + k1) · (ϕ2(‖x‖) + k2).

Consequently,

‖T x‖ ≤
1

Γ(α+ 1)
[ϕ1(‖x‖) + k1] · [ϕ2(‖x‖) + k2].

From assumption (a3), it follows that the operator T transforms Br0 into itself.
Moreover, from the last estimates, we get

(10) ‖FBr0‖ ≤ ϕ1(r0) + k1
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and

(11) ‖GBr0‖ ≤
ϕ2(r0) + k2

Γ(α+ 1)
.

Step 3. The operators F and G are continuous on the ball Br0 .

First, we prove that F is continuous on Br0 . To do this, we fix ε > 0 and we
take x, y ∈ Br0 with ‖x− y‖ ≤ ε. Then, for t ∈ [0, 1], we have,

|(Fx)(t) − (Fy)(t)| = |f(t, x(t), x(µt)) − f(t, y(t), x(µt))|

≤ ϕ1 (max(|x(t) − y(t)|, |x(µt), y(µt)|))

≤ ϕ1 (max (‖x− y‖, ‖x− y‖)) ≤ ϕ1 (‖x− y‖) ≤ ϕ1(ε) < ε.

The last estimate proves that F is continuous on Br0 , where we have used Remark
3.9.

Next, we prove that G is continuous on Br0 . In order to do this, we fix ε > 0
and take x, y ∈ Br0 with ‖x− y‖ ≤ ε. Then, for t ∈ [0, 1], we have,

|(Gx)(t) − (Gy)(t)| =
1

Γ(α)

∣∣∣∣
∫ t

0

g(s, x(s), x(σs))

(t− s)1−α
ds−

∫ t

0

g(s, y(s), y(σs))

(t− s)1−α
ds

∣∣∣∣

≤
1

Γ(α)

∫ t

0

|g(s, x(s), x(σs)) − g(s, y(s), y(σs))|

(t− s)1−α
ds

≤
1

Γ(α)

∫ t

0

ϕ2 (max(|x(s)− y(s)|, |x(σs) − y(σs)|))

(t− s)1−α
ds

≤
1

Γ(α)
ϕ2 (max(‖x− y‖, ‖x− y‖))

∫ t

0

ds

(t− s)1−α

≤
1

Γ(α+ 1)
ϕ2(‖x− y‖)tα ≤

1

Γ(α+ 1)
ϕ2(ε) <

ε

Γ(α+ 1)
,

where we have used the fact that ϕ2(ε) < ε (Remark 3.9). The last chain of
inequalities gives us

‖Gx− Gy‖ <
ε

Γ(α+ 1)

and this proves the continuity of the operator G on Br0 . Finally, since T = F · G,
it follows that T is continuous on Br0 .

Step 4. For φ 6= X ⊂ Br0 , estimates of ω0(FX) and ω0(GX).

Fix ε > 0 and take x ∈ X and t1, t2 ∈ [0, 1] with |t1 − t2| ≤ ε. Then,

|(Fx)(t1)− (Fx)(t2)| = |f(t1, x(t1), x(µt1))− f(t2, x(t2), x(µt2))|

≤ |f(t1, x(t1), x(µt1))− f(t1, x(t2), x(µt2))|
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+ |f(t1, x(t2), x(µt2))− f(t2, x(t2), x(µt2))|

≤ ϕ1 (max (|x(t1)− x(t2)|, |x(µt1)− x(µt2)|)) + ω(f, ε)

≤ ϕ1 (max (ω(x, ε), ω(x, µε))) + ω(f, ε),

where ω(f, ε) denotes the quantity

ω(f, ε) = sup{|f(t1, x, y)− f(t2, x, y)| : t1, t2 ∈ [0, 1], |t1− t2| ≤ ε, x, y ∈ [−r0, r0]}.

Therefore,
ω(FX, ε) ≤ ϕ1 (max(ω(X, ε), ω(X,µε))) + ω(f, ε),

and, since f(t, x, y) is uniformly continuous on bounded subsets of [0, 1]× R × R,

ω(f, ε) → 0 as ε → 0. From the last inequality and using the fact that ϕ1 is
continuous, we infer

ω0(FX) ≤ ϕ1

(
max(lim

ε→0
ω(X, ε), lim

ε→0
ω(X,µε))

)
(12)

= ϕ1

(
max(ω0(X), ω0(X))

)
= ϕ1(ω0(X)).

Now, we estimate ω0(GX). Fix ε > 0 and we take x ∈ X, t1, t2 ∈ [0, 1] with
|t1 − t2| ≤ ε. Without loss of generality, we can suppose that t1 < t2, then

|(Gx)(t1)− (Gx)(t2)| =
1

Γ(α)

∣∣∣∣
∫ t2

0

g(s, x(s), x(σs))

(t2 − s)1−α
ds−

∫ t1

0

g(s, x(s), x(σs))

(t1 − s)1−α
ds

∣∣∣∣

≤
1

Γ(α)

[∫ t1

0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣ |g(s, x(s), x(σs))| ds

+

∫ t2

t1

(t2 − s)α−1|g(s, x(s), x(σs))|ds

]

≤
1

Γ(α)

[∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
|g(s, x(s), x(σs))| ds

+

∫ t2

t1

(t2 − s)α−1|g(s, x(s), x(σs))| ds

]

Since g(t, x) is continuous on [0, 1] × R × R, it is bounded on the compact set
[0, 1] × [−r0, r0] × [−r0, r0]. Put L = sup{|g(t, x, y)| : t ∈ [0, 1], x, y ∈ [−r0, r0]}.
Then, from the last inequality, it follows that,

|(Gx)(t1)− (Gx)(t2)|

≤
L

Γ(α)

[∫ t1

0

[
(t1 − s)α−1 − (t2 − s)α−1

]
ds+

∫ t2

t1

(t2 − s)α−1ds

]

≤
L

Γ(α+ 1)
[(t2 − t1)

α + tα1 − tα2 + (t2 − t1)
α]

≤
2L

Γ(α+ 1)
(t2 − t1)

α ≤
2L

Γ(α+ 1)
εα,
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where we have used the fact that tα1 − tα2 ≤ 0. Therefore,

ω(Gx, ε) ≤
2L

Γ(α+ 1)
εα,

and this gives us

(13) ω(GX, ε) ≤
2L

Γ(α + 1)
εα.

Taking ε → 0, we get ω0(GX) = 0.

Step 5. For φ 6= X ⊂ Br0 , an estimate of ω0(T X).

Taking into account Proposition 3.11, (9), (12) and (13), we have

ω0(T X) = ω0(FX · GX) ≤ ‖FX‖ω0(GX) + ‖GX‖ω0(FX)

≤ ‖FBr0‖ω0(GX) + ‖GBr0‖ω0(FX)

≤
1

Γ(α + 1)
(ϕ2(r0) + k2) · ϕ1(ω0(X)).

By assumption (a3), ϕ2(r0) + k2 ≤ Γ(α+ 1), and, therefore,

1

Γ(α+ 1)
(ϕ2(r0) + k2) · ϕ1 ∈ A

(it is easy to prove that if β ∈ [0, 1] and ϕ ∈ A then βϕ ∈ A).

Finally, by Theorem 3.7, the operator T has at least one fixed point in Br0 .

This completes the proof.

5. APPLICATIONS AND EXAMPLES

The nonoscillatory character of the problems the solutions of (5) is an interesting
question in real world. It means that the solutions of (5) have a constant sign.
In connection with this question, we notice that if f(t, x, y) and g(t, x, y) have the
same constant sign (this means that f(t, x, y) > 0 and g(t, x, y) ≥ 0 or f(t, x, y) < 0
and g(t, x, y) ≤ 0 for any t ∈ [0, 1] and x, y ∈ R) and under assumptions of Theorem
4.12 then the solution x(t) of (5) is nonnegative. This is due to the fact that the
solutions of (5) satisfy the integral equation

(14) x(t) =
f(t, x(t), x(µt))

Γ(α)

∫ t

0

g(s, x(s), x(σs))

(t− s)1−α
ds, 0 ≤ t ≤ 1.

Moreover, the following proposition connects with the above mentioned question.

Proposition 5.13. Under assumptions of Theorem 4.12 and suppose that g(t, x, y)
has constant sign and g(t, x, y) 6= 0 for t ∈ [0, 1] and x, y ∈ R then the solution x(t)
of (5) obtained by Theorem 4.12 verifies that x(t) 6= 0 for 0 < t < 1.
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Proof. Assume the contrary, we can find t∗ ∈ (0, 1) with x(t∗) = 0. Next, since
x(t) satisfies Eq.(14), we have,

0 = x(t∗) =
f(t∗, 0, x(µt∗))

Γ(α)

∫ t∗

0

g(s, x(s), x(σs))

(t∗ − s)1−α
ds.

Taking into account that f(t, x, y) 6= 0 for any t ∈ [0, 1] and x, y ∈ R, we infer that

(15)

∫ t∗

0

(t∗ − s)α−1 g(s, x(s), x(σs)) ds = 0.

Since g(t, x, y) has constant sign and (t∗ − s)α−1 > 0 for s ∈ [0, t∗), we deduce that

g(s, x(s), x(σs)) = 0 a.e. s ∈ [0, t∗].

This contradicts the fact that g(t, x, y) 6= 0 for (t, x, y) ∈ [0, 1] × R × R which
completes the proof. �

The following corollary is an application of Bolzano’s theorem.

Corollary 5.14. Under assumptions of Proposition 5.13, the solution x(t) of (5)
obtained by Theorem 4.12 satisfies that x(t) > 0 for t ∈ (0, 1) or x(t) < 0 for

t ∈ (0, 1).

On the other hand, if we perturb the data function in (5)

(16)





Dα
0+

[
x(t)

f(t, x(t), x(µt))

]
= g(t, x(t), x(σt)) + η(t), 0 < t < 1,

x(0) = 0,

where 0 < α, µ, σ < 1, f ∈ C([0, 1]× R× R,R \ {0}), g ∈ C([0, 1]× R× R,R) and
η ∈ C[0, 1], the assumptions (a1) and (a2) of Theorem 4.12 are satisfied if f(t, x, y)
and g(t, x, y) also satisfy them and only, we would have to check assumption (a3).
This fact makes that our theorem (Theorem 4.12) is very applicable.

Next, we present an example illustrating Theorem 4.12.

Example 5.15. Consider the following fractional hybrid problem

(17)





D

1

2

0+

[
x(t)

t

4
+ ln

(
1 +

∣∣x
(
t

3

)∣∣)+ 1

4

]
=

1

4
+

1

10
x(t) +

1

10
x
( t

2

)
, 0 < t < 1,

x(0) = 0.

Notice that this problem is a particular case of (5), where α =
1

2
, µ =

1

3
, σ =

1

2
,

f(t, x, y) =
t

4
+ ln(1 + |y|) +

1

4
and g(t, x, y) =

1

4
+

x

10
+

y

10
.

It is clear that the functions f and g satisfy (a1) of Theorem 4.12 with |f(t, 0, 0)| =∣∣∣∣
t

4
+

1

4

∣∣∣∣ and |g(t, 0, 0)| =
1

4
. Therefore, k1 =

1

2
and k1 =

1

4
. Moreover, for any x1, x2, x̂1,

x̂2 ∈ R and any t ∈ [0, 1], we have

|f(t, x1, x2)− f(t, x̂1, x̂2)| = | ln(1 + |x2|)− ln(1 + |x̂2|)|
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= ln

(
1 + |x2|

1 + |x̂2|

)
= ln

(
1 +

|x2| − |x̂2|

1 + |x̂2|

)

≤ ln (1 + (|x2| − |x̂2|)) ≤ ln (1 + |x2 − x̂2|) ,

where, without loss of generality, we have taken |x2| > |x̂2|. In this case, ϕ1(t) = ln(1+ t)
for t ∈ R+ and it is easy to see that ϕ1 ∈ A.

On the other hand, for any x1, x2, x̂1, x̂2 ∈ R and any t ∈ [0, 1], we have

|g(t, x1, x2)− g(t, x̂1, x̂2)| =

∣∣∣∣
1

10
(x1 − x̂1) +

1

10
(x2 − x̂2)

∣∣∣∣

≤
1

10
(|x1 − x̂1|+ |x2 − x̂2|)

≤
1

5
(max (|x1 − x̂1|+ |x2 − x̂2|))

and, therefore, we can take ϕ2(t) =
1

5
t. It is clear that ϕ2 ∈ A. Moreover, ϕ1 is obviously

continuous.

Finally, the inequality appearing in assumption (a3) of Theorem 4.12 has the form
(
ln(1 + r) +

1

2

)(
1

5
r +

1

4

)
≤ Γ

(
3

2

)
r.

The last inequality is satisfied for r0 = 1, since
(
ln 2 +

1

2

)(
1

5
+

1

4

)
∼= 0.5373 ≤ 0.88623 ∼= Γ

(
3

2

)
.

Moreover,
1

5
+

1

4
= 0.45 < 0.88623 ∼= Γ

(
3

2

)
.

Now, by using Theorem 4.12, (17) has at least one solution x ∈ C[0, 1] such that ‖x‖ ≤ 1.

6. COMPARISON WITH OTHER RESULTS

The authors in [21] studied the fractional hybrid differential equation

(18)





Dα
0+

[
x(t)

f
(
t, x(t)

)
]
= g

(
t, x(t)

)
, a.e. t ∈ [0, 1],

x(0) = 0,

under the following conditions:

(i) f ∈ C([0, 1]× R,R \ {0}) and g ∈ C([0, 1]× R,R).

(ii) The function x →
x

f(t, x)
is increasing in R almost everywhere for t ∈ [0, 1].

(iii) There exists a constant L > 0 such that,

|f(t, x)− f(t, y)| ≤ L|x− y|,

for every t ∈ [0, 1] and x, y ∈ R.
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(iv) There exists a function h ∈ L1([0, 1],R+) such that,

|g(t, x)| ≤ h(t) a.e t ∈ [0, 1], for all x ∈ R.

(v)
L‖h‖L1

Γ(α+ 1)
< 1.

They proved the following result.

Theorem 6.16 (Theorem 3.1 [21]). Under assumptions (i) – (v), (18) has a solu-

tion in C[0, 1].

It is easy to see that (18) is a particular case of (5) when the functions
f(t, x, y) and g(t, x, y) are independent of y.

Next, we present an example which cannot be treated by using Theorem 6.16
but it can be studied by Theorem 4.12.

Example 6.17. Consider the following fractional hybrid initial value problem

(19)





D

1

2

0+

[
x(t)

1

5
+ ln(1 + |x(t)|)

]
=

1

8
+

1

10
|x(t)|, 0 < t < 1,

x(0) = 0.

(19) is a particular case of (5), where α =
1

2
, µ = σ = 0, f(t, x, y) =

1

5
+ ln(1 + |x|) and

g(t, x, y) =
1

8
+

1

10
|x|.

Obviously, the functions f and g satisfy assumption (a1) of Theorem 4.12 and,

moreover, k1 = sup{|f(t, 0, 0)|} =
1

5
and k2 = sup{|g(t, 0, 0)|} =

1

8
.

By using a similar argument as in Example 5.15, we obtain

|f(t, x1, x2)− f(t, x̂1, x̂2)| = |ln(1 + |x1|) − ln(1 + |x̂1|)| ≤ ln(1 + |x1 − x̂1|)

and

|g(t, x1, x2)− g(t, x̂1, x̂2)| =
1

10
||x1| − |x̂1|| ≤

1

10
|x1 − x̂1|

for any x1, x2, x̂1, x̂2 ∈ R and t ∈ [0, 1]. Therefore, the functions f and g satisfy assumption

(a2) of Theorem 4.12 with ϕ1(t) = ln(1 + t) for t ∈ R+ and ϕ2(t) =
t

10
for t ∈ R+. It is

easy to see that ϕ1, ϕ2 ∈ A and ϕ1 is continuous.

For assumption (a3) of Theorem 4.12, we have the inequality
(
ln(1 + r) +

1

5

)(
1

10
r +

1

8

)
≤ Γ

(
3

2

)
r

and this inequality is satisfied by r0 = 1, since
(
ln 2 +

1

5

)(
1

10
+

1

8

)
∼= 0.200958 ≤ 0.88623 ∼= Γ

(
3

2

)
.

Moreover,
1

10
+

1

8
∼= 0.225 < Γ

(
3

2

)
∼= 0.88623.

Therefore, by Theorem 4.12, (19) has a solution x ∈ C[0, 1] with ‖x‖ ≤ 1.
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Notice that problem (19) cannot be treated by Theorem 6.16 since the func-

tion g(t, x, y) =
1

8
+

1

10
|x| does not satisfy assumption (iv).

In [2], the authors studied the nonlinear pantograph equation, Eq.(2), under
the following assumptions:

(i) α, λ ∈ (0, 1).

(ii) f : J × X × X → X is a continuous function, where (X, ‖.‖) is a Banach
space.

(iii) There exists a positive constant L > 0 such that

‖g(t, u, x)− g(t, v, y)‖ ≤ L(‖u− v‖ + ‖x− y‖),

for any t ∈ J and u, v, x, y ∈ X.

(iv) 4γL < 1, where γ =
Tα

Γ(α+ 1)
.

They proved the following result.

Theorem 6.18 (Theorem 3.1 of [2]). Under assumptions (i)−(iv), (2) has a unique

solution in C(J ×X).

Next, we present an example which cannot be treated by Theorem 6.18 while
it can be studied by Theorem 4.12.

Example 6.19. Consider the following fractional pantograph equation

(20)





D

1

2

0+
x(t) =

1

25
+ ln

(
1 +

∣∣∣x
( t

2

)∣∣∣
)
, 0 < t < 1,

x(0) = 0.

(20) is a particular case of (5), where α =
1

2
, f(t, x, y) = 1, σ =

1

2
and g(t, x, y) =

1

25
+ ln (1 + |y|) .

It is clear that the functions f and g satisfy assumption (a1) of Theorem 4.12 and,

moreover, k1 = sup{|f(t, 0, 0)| : t ∈ [0, 1]} = 1 and k2 = sup{|g(t, 0, 0)| : t ∈ [0, 1]} =
1

25
.

It is obvious that ϕ1(t) = 0 and if |y| > |y1| then, by using a similar argument that
in Example 5.15, we have

|g(t, x, y)− g(t, x1, y1)| = | ln(1 + |y|)− ln(1 + |y1|)| ≤ ln(1 + |y − y1|).

Therefore, ϕ2(t) = ln(1 + t) and ϕ2 ∈ A.

In this case, assumption (a3) of Theorem 4.12 is given by

ln(1 + r) +
1

25
≤ rΓ

(
3

2

)
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and it is easily seen that this inequality is satisfied by r0 = 1, since

ln 2 +
1

25
∼= 0.73344 < 0.88623 ∼= Γ

(
3

2

)
.

Therefore, by Theorem 4.12, problem (20) has a solution x ∈ [0, 1] with ‖x‖ ≤ 1.

On the other hand, an application of the mean value theorem gives us

|g(t, x, y)− g(t, x1, y1)| = | ln(1 + |y|)− ln(1 + |y1|)| ≤ ||y| − |y1|| ≤ |y − y1|.

Consequently, L = 1 in assumption (iii) of Theorem 6.18.

Moreover, γ =
1

Γ
(
3

2

) and 4γL =
4

Γ
(
3

2

) = 4.51 > 1.

Notice that the constant L = 1 cannot be improved in the last inequality since (ln(1 +

x))′ =
1

1 + x
for x ≥ 0 and

1

1 + x
tends to 1 when x tends to zero.

Therefore, since 4γL = 4.51 > 1, problem (20) cannot be studied by Theorem 6.18.
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